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The Challenge

Boo Barkee, Deh Cac Can, Julia Ecks, Theo Moriarty, R. F. Ree:

Why you cannot even hope to use Groebner Bases in Public Key
Cryptography: an open letter to a scientist who failed and a
challenge to those who have not yet failed1,

Journal of Symbolic Computation, 18 (6) 1994

In the 14 years since the publication of this paper, several scientists
have failed while trying to counter this criminal threat, including
eminent cryptographers like M.R. Fellows, N. Koblitz,
(Combinatorial Cryptosystems Galore!) and their epigones that
defined several Polly Cracker cryptosystems. None survived.

It is now our turn to risk to fail, proposing two new PK
cryptosystems using Gröbner bases for the key definition.

1partially supported by Spectre
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M. Caboara, F.Caruso, C. Traverso Gröbner Bases In Public Key Cryptography: Hope Never Dies



The Challenge

Boo Barkee, Deh Cac Can, Julia Ecks, Theo Moriarty, R. F. Ree:

Why you cannot even hope to use Groebner Bases in Public Key
Cryptography: an open letter to a scientist who failed and a
challenge to those who have not yet failed1,

Journal of Symbolic Computation, 18 (6) 1994

In the 14 years since the publication of this paper, several scientists
have failed while trying to counter this criminal threat, including
eminent cryptographers like M.R. Fellows, N. Koblitz,
(Combinatorial Cryptosystems Galore!) and their epigones that
defined several Polly Cracker cryptosystems. None survived.

It is now our turn to risk to fail, proposing two new PK
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Two GB PK cryptosystems

Two GB PK cryptosystems:

I The two cryptosystems combine multivariate polynomial
algebra and lattices, modifying two well-known cryptosystems:

I GGH by O. Goldreich, S. Goldwasser, and S. Halevi,
I NTRU by J. Hoffstein, J. Pipher, and J. H. Silverman.

I Both modifications change the key creation and decryption
engine, but from the point of view of encryption they are the
same as the original cryptosystems.
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GB-GGH aka Lattice Polly Cracker

I The first cryptosystem modifies GGH, using the computation
of the normal form with respect of a Gröbner basis (instead of
Babai round-off algorithm) to decypher.

Key ingredient: the equivalence of lattices and binomial
ideals; Xα − X β corresponds to the vector α− β.

The construction is complex, and very technical to ensure
(conjectured) security, hence we cannot discuss it now.

I The resulting cryptosystem is not only a lattice cryptosystem,
but also a Polly Cracker cryptosystem; it resists all the known
attacks, including the differential message attack of
D. Hofheinz and R. Steinwandt that breaks all the other Polly
Cracker cryptosystems.

I The remaining issue is the protection of the private key. We
have tried several techniques, and discovered new attacks; we
believe to have now a secure variant, but it has not yet
undergone sufficient scrutiny.
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NTRU

Concerning NTRU, we will give a few more details of our
modification, that we called GB-NTRU.
This is an outline of NTRU:

I The public setting is given by n, q, p; A = Zn/(xn − 1) and
the public computations are done in A/q.

I The private key is composed finding two “small” polynomials
f , g and the public key is h = p · f −1

q g ∈ A/q

I The encyphering of a message m is c = hr + m, r random.

I The decyphering is made computing fc ∈ A/q, lifting to A,
obtaining (if everything goes well) fm + p · hr = fm ∈ A/p.
Then m mod p is recovered.

In GB-NTRU we use bivariate (or multivariate) polynomials (this is
needed for some technical constraints that will not be apparent in
our talk).
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GB-NTRU

These are the main differences in key creation:

I NTRU uses A = Z[x ]/(xn − 1), q, p, f , g ∈ A, and the public
key is h = p · f −1

q g ∈ A/q; q, p are public.

I GB-NTRU uses A = Z[X ]/(XN − 1), q, p, f , g ∈ A, and the
public key is h = p · f −1

Q g ∈ A/q; q, p are public.

q ∈ Q ⊆ A

X is a pair of variables (x , y), Q is an ideal containing q. In
particular, h = p · f −1

q g + α ∈ A/q, α ∈ Q. Having two
variables, N is chosen shorter, n = N2 produce the same
codeword length (and the same arithmetic cost).

I In both, to encypher, given a message m, choose a random r
and compute c = hr + m ∈ A/q
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The private ideal Q and its use

Q is part of the private key! We have h = p · g/f ∈ A/Q
(private), but the public only has h = p · g/f + α ∈ A/q. Hence
an eavesdropper has no way to recover f , g without guessing Q. It
would be like a GB-RSA for which pq is private, the public key is
pq + c , we need to retrieve p and q, but even if we know how to
factor we don’t know what to factor.

The private Q makes the attack of Coppersmith-Shamir to the
NTRU key impossible. This allows to choose smaller f , g , and this
in turn allows to choose larger m, f , increasing the security of the
message.

The presence of Q has of course consequences in the decyphering:
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Decyphering

I In NTRU, to decypher compute fc ∈ A/q,
fc = p · gh + mf ∈ A/q.

I In GB-NTRU, to decypher compute fc ∈ A/q,
fc = p · gh + mf ∈ A/Q, fc = p · gh + mf + β ∈ A/q, β ∈ Q.
To be able to continue, one has to find p · gh + mf ∈ A/q

Q ⊆ A and A as group is ZN2
: Q is a lattice, under suitable

conditions β is the closest vector to fc.

If β is correctly identified, then decyphering continues.

I In both, under suitable conditions, lifting fc to A and reducing
mod p, one recovers fm ∈ A/p, hence m.

I During the decyphering, one has to find not only m, but also
r , to check the conformity to the specifications; otherwise
chosen cyphertext attacks might disclose the private lattice.
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CVP for Q

We have to solve a CVP for the lattice Q; depending on the lattice
and on the vector the problem might be easy.

In our tests with reasonable parameters, for random choices of Q
the CVP for fc is always easily solved via Babai closest plane
algorithm, but for at least 0.1% of random Q for 99% of the
messages the (much faster) round-off algorithm is enough.

We believe that the quality of Q might be corrrelated with the
geometric properties of the zero-set of Q, and this might be
exploited, either to build good keys, or to attack the private lattice.
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Security of NTRU vs. GB-NTRU

Avoiding the Coppersmith-Shamir key attack (and other key
attacks) improves the overall security of the cryptosystem. It
might allow to choose smaller f and g , (increasing the size of f
and g makes the private key more secure) hence one may choose
larger r and m (making the message more secure).
As a consequence, this might allow to choose shorter lengths, and
reduce the computational cost of decoding, compensating the
increased complexity.
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Conclusions. Was Barkee wrong?
(Where are Gröbner bases in GB-NTRU?)

In GB-NTRU a Gröbner basis of Q is used to invert f and to
perform computations mod Q. We have to admit however that
other methods can be used, so there is really no GB in GB-NTRU.

In GB-GGH, aka LPC Gröbner bases are essential. We are quite
confident to eventually come with a secure and relatively practical
cryptosystem, but still we don’t have conclusive evidence.

So up to now we consider Barkee challenge still open.
Up to now, we just hope.
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We have a proof-of-concept implementation, not yet ready for
prime time.

The work on these cryptosystems is still in progress.

More details in
Massimo Caboara, Fabrizio Caruso, Carlo Traverso
“Gröbner Bases for Public Key Cryptography”,
ISSAC’08, July 20–23, 2008, Hagenberg, Austria.

(preprints in http://posso.dm.unipi.it/crypto)
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