
Efficient Two-party and
Multiparty Computation against
Covert Adversaries

Vipul Goyal Payman Mohassel Adam Smith

Penn SateUCLA UC Davis

2

Secure Multiparty Computation

• Parties learn f(x1,…,xn)

• But no other information

P1, x1

P2, x2

P5, x5

P4, x4

P3, x3

Adversary Models

 Number of corrupted parties

 Honest majority

 General adversary structures

 Dishonest majority

 No fairness or output delivery guarantee

 Malicious vs. Semi-honest

 Static vs. Adaptive

Covert Adversaries

 Somewhere between malicious and
semi-honest

 Adversary can cheat but,

 Caught with reasonable probability

 Detected cheaters are punished!

 Studied in several previous works

 [FY92], [CO99], [AL07], etc.

Covert Adversaries

 Simulation-based definition [AL07]

TTP

malicious honest

x1 x2

x2anything

cheat

1- ɛ

corrupted

Covert Adversaries

TTP

malicious honest

x1 x2

x2anything

cheat

ɛ

anything

x2

Current Situation

 Honest Majority
 [DI05]

 Constant Round
 Blackbox reduction to PRG

 Dishonest Majority
 [IKLP06]

 Blackbox
 Polynomial number of rounds

 [KOS03]
 generic ZK
 O(log(n)) rounds

 [MF06,Woo07,LP07,JS07]
 Constant round
 No generic ZK
 Only two-party case

Goal

 Combine all the good properties

 Round and communication efficiency

 Avoiding generic ZK

 Handle dishonest majority

 Settle for Covert Adversaries

Contributions

 Two-party Case

 Improve communication

 Malicious and covert adversaries

 Multiparty Case

 Avoids generic ZK

 O(log(n)) rounds

 Covert Adversaries

Two-party Overview

P1 P2

Challenge e

OTs for P2’s input keys

t

GC[1]

GC[t]

Open all except for GC[e]

P2 evaluates GC[e]

TWO-Party Improvements

 Circuits generated pseudo randomly

 Only hashes of circuits sent over

 Seeds are revealed for opened circuits

 Reduced OT communication
 Only first few steps of OTs are executed

initially

 Receiver committed to his inputs

 Sufficient for simulation to go through

Two-party Improvements

P1 P2

s1 ← 1k , G(s1),
GC[1]← Garble(G(s1))

Challenge e

com(s1), com(h(GC[1]))

Reveal all seeds except se

Send GC[e], P2 evaluates GC[e]

com(st), com(h(GC[t]))

h: hash function; G: PRG

st ← 1k , G(st),
GC[t]← Garble(G(st))

Two-party Improvements

 Communication
 Undetected cheating prob. 1/t

 O(|C| + t) instead of O(t|C|)

 Can handle larger t

 More incentive not to cheat

 Malicious adversaries
 Similar techniques work

 Have not analyzed asymptotically

Multiparty Case

 Modify [BMR90] garbled circuit
construction

 Run the protocol in t session

 Each session performed using
semihonest SFE

 Perform cut-and-choose

Modified BMR

 A mask bit λw for every wire w
 Pi holds λi

w

 λw = λ1
w λ2

w ... λn
w

 for Pi’s input bit xw let
 xw λi

w

 Two random keys kw,0, kw,1 for wire w
 Pi holds ki

w,0, ki
w,1

 kw,j = k1
w,j || k2

w,j || ... || kn
w,j

Modified BMR

 Pi expands his keys to one-time pads

 pi
w,0, qi

w,0 ← G(ki
w,0)

 pi
w,1, qi

w,1 ← G(ki
w,1)

 Garbled NAND gate g:

 input wires a,b

 output wire c

Modified BMR

 g(0,0) = p1
a,0 … pn

a,0 p1
b,0 … pn

b,0

 xa λa = 0; xb λb = 0

 (xa NAND xb) λc = (λa NAND λb) λc

 Similarly for g(0,1), g(1,0) and
g(1,1)

k1
c,0 || … || kn

c,0 if λa NAND λb = λc

k1
c,1 || … || kn

c,1 otherwise
g(0,0)

g(0,1)

g(1,0)

g(1,1)

Main Modifications

 Inputs not embedded in garbled circuit

 Opening a circuit does not reveal inputs

 Garbling done using a semi-honest SFE

 Parties commit to their random coins

 Run multiple semi-honest sessions

 Cheating is detected through cut-and-
choose

Sub-Protocols

 PublicCoinFlip
 (1k,…, 1k) → (σ , …, σ)

 [CR87, KOS03] O(logn) rounds
 Simulatable Commitments

 Commit: (σ;x1,…,xn) → ({com(xi)}, … , {com(xi)})

 Open: Pi opens com(xi)
 CommittedCoinFlipToAll

 (σ;1k,…,1k) → (com(e), …, com(e))

 CommittedCoinFlipToPi

 (σ;1k,…,1k) → (com(e), …, e , … , com(e))

Main Protocol

CRS generation
σ ← PublicCoinFlip

Challenge generation
Com(e) ← CommittedCoinFlipToAll(σ)

Committing to randomness
For each player i, for each session S in [1..t]

- ri[S] ← CommittedCoinFlipToPi(σ)

- Expanded using pseudorandom generator
- used to generate mask bits, wire keys, semi-honest SFE randomness

Committing to Masked Inputs
Pi commits to xw λi

w[S] for his input wires w
Generating Garbled Circuits
Parties run t parallel sessions to generate garbled circuits GC[1], … , GC[t]

Verification Phase
Parties open the committed challenge e
For each session S ≠ e, parties open all commitments (except for masked inputs)
Evaluation Phase
For GC[e], parties open masked inputs and broadcast
Each party evaluates the garbled circuit on their own

Summary

 Multiparty

 Covert Adversaries

 Avoid generic ZK

 Round efficient

 Two-party

 Improved efficiency

 Covert and malicious adversaries

Thank you!

Efficiency Measures

 Communication
 Number of bits exchanged

 Rounds
 Number of rounds of interaction

 Computation
 Local work by each party

 Practical measures
 Black-box use of underlying primitives
 Avoiding generic ZK proofs
 Efficiently implementable primitives

