
Efficient Two-party and
Multiparty Computation against
Covert Adversaries

Vipul Goyal Payman Mohassel Adam Smith

Penn SateUCLA UC Davis

2

Secure Multiparty Computation

• Parties learn f(x1,…,xn)

• But no other information

P1, x1

P2, x2

P5, x5

P4, x4

P3, x3

Adversary Models

 Number of corrupted parties

 Honest majority

 General adversary structures

 Dishonest majority

 No fairness or output delivery guarantee

 Malicious vs. Semi-honest

 Static vs. Adaptive

Covert Adversaries

 Somewhere between malicious and
semi-honest

 Adversary can cheat but,

 Caught with reasonable probability

 Detected cheaters are punished!

 Studied in several previous works

 [FY92], [CO99], [AL07], etc.

Covert Adversaries

 Simulation-based definition [AL07]

TTP

malicious honest

x1 x2

x2anything

cheat

1- ɛ

corrupted

Covert Adversaries

TTP

malicious honest

x1 x2

x2anything

cheat

ɛ

anything

x2

Current Situation

 Honest Majority
 [DI05]

 Constant Round
 Blackbox reduction to PRG

 Dishonest Majority
 [IKLP06]

 Blackbox
 Polynomial number of rounds

 [KOS03]
 generic ZK
 O(log(n)) rounds

 [MF06,Woo07,LP07,JS07]
 Constant round
 No generic ZK
 Only two-party case

Goal

 Combine all the good properties

 Round and communication efficiency

 Avoiding generic ZK

 Handle dishonest majority

 Settle for Covert Adversaries

Contributions

 Two-party Case

 Improve communication

 Malicious and covert adversaries

 Multiparty Case

 Avoids generic ZK

 O(log(n)) rounds

 Covert Adversaries

Two-party Overview

P1 P2

Challenge e

OTs for P2’s input keys

t

GC[1]

GC[t]

Open all except for GC[e]

P2 evaluates GC[e]

TWO-Party Improvements

 Circuits generated pseudo randomly

 Only hashes of circuits sent over

 Seeds are revealed for opened circuits

 Reduced OT communication
 Only first few steps of OTs are executed

initially

 Receiver committed to his inputs

 Sufficient for simulation to go through

Two-party Improvements

P1 P2

s1 ← 1k , G(s1),
GC[1]← Garble(G(s1))

Challenge e

com(s1), com(h(GC[1]))

Reveal all seeds except se

Send GC[e], P2 evaluates GC[e]

com(st), com(h(GC[t]))

h: hash function; G: PRG

st ← 1k , G(st),
GC[t]← Garble(G(st))

Two-party Improvements

 Communication
 Undetected cheating prob. 1/t

 O(|C| + t) instead of O(t|C|)

 Can handle larger t

 More incentive not to cheat

 Malicious adversaries
 Similar techniques work

 Have not analyzed asymptotically

Multiparty Case

 Modify [BMR90] garbled circuit
construction

 Run the protocol in t session

 Each session performed using
semihonest SFE

 Perform cut-and-choose

Modified BMR

 A mask bit λw for every wire w
 Pi holds λi

w

 λw = λ1
w λ2

w ... λn
w

 for Pi’s input bit xw let
 xw λi

w

 Two random keys kw,0, kw,1 for wire w
 Pi holds ki

w,0, ki
w,1

 kw,j = k1
w,j || k2

w,j || ... || kn
w,j

Modified BMR

 Pi expands his keys to one-time pads

 pi
w,0, qi

w,0 ← G(ki
w,0)

 pi
w,1, qi

w,1 ← G(ki
w,1)

 Garbled NAND gate g:

 input wires a,b

 output wire c

Modified BMR

 g(0,0) = p1
a,0 … pn

a,0 p1
b,0 … pn

b,0

 xa λa = 0; xb λb = 0

 (xa NAND xb) λc = (λa NAND λb) λc

 Similarly for g(0,1), g(1,0) and
g(1,1)

k1
c,0 || … || kn

c,0 if λa NAND λb = λc

k1
c,1 || … || kn

c,1 otherwise
g(0,0)

g(0,1)

g(1,0)

g(1,1)

Main Modifications

 Inputs not embedded in garbled circuit

 Opening a circuit does not reveal inputs

 Garbling done using a semi-honest SFE

 Parties commit to their random coins

 Run multiple semi-honest sessions

 Cheating is detected through cut-and-
choose

Sub-Protocols

 PublicCoinFlip
 (1k,…, 1k) → (σ , …, σ)

 [CR87, KOS03] O(logn) rounds
 Simulatable Commitments

 Commit: (σ;x1,…,xn) → ({com(xi)}, … , {com(xi)})

 Open: Pi opens com(xi)
 CommittedCoinFlipToAll

 (σ;1k,…,1k) → (com(e), …, com(e))

 CommittedCoinFlipToPi

 (σ;1k,…,1k) → (com(e), …, e , … , com(e))

Main Protocol

CRS generation
σ ← PublicCoinFlip

Challenge generation
Com(e) ← CommittedCoinFlipToAll(σ)

Committing to randomness
For each player i, for each session S in [1..t]

- ri[S] ← CommittedCoinFlipToPi(σ)

- Expanded using pseudorandom generator
- used to generate mask bits, wire keys, semi-honest SFE randomness

Committing to Masked Inputs
Pi commits to xw λi

w[S] for his input wires w
Generating Garbled Circuits
Parties run t parallel sessions to generate garbled circuits GC[1], … , GC[t]

Verification Phase
Parties open the committed challenge e
For each session S ≠ e, parties open all commitments (except for masked inputs)
Evaluation Phase
For GC[e], parties open masked inputs and broadcast
Each party evaluates the garbled circuit on their own

Summary

 Multiparty

 Covert Adversaries

 Avoid generic ZK

 Round efficient

 Two-party

 Improved efficiency

 Covert and malicious adversaries

Thank you!

Efficiency Measures

 Communication
 Number of bits exchanged

 Rounds
 Number of rounds of interaction

 Computation
 Local work by each party

 Practical measures
 Black-box use of underlying primitives
 Avoiding generic ZK proofs
 Efficiently implementable primitives

