Efficient Two-party and
Multiparty Computation against

!'_ Covert Adversaries

Vipul Goyal Payman Mohassel = Adam Smith
UCLA UC Davis Penn Sate

‘L Secure Multiparty Computation
4 N

. Parties learn f(x4,...,X,)
. But no other information

i Adversary Models

= Number of corrupted parties
= Honest majority
= General adversary structures
= Dishonest majority
= No fairness or output delivery guarantee

= Malicious vs. Semi-honest
= Static vs. Adaptive

i Covert Adversaries

= Somewhere between malicious and
semi-honest
= Adversary can cheat but,
= Caught with reasonable probability
= Detected cheaters are punished!
= Studied in several previous works
« [FY92], [CO99], [ALO7], etc.

i Covert Adversaries

= Simulation-based definition [ALO7]

L

anythi 1-€ X,
chedt corrupted
X1 X,

i Covert Adversaries

i Current Situation

= Honest Majority
= [DIO5]
=« Constant Round
= Blackbox reduction to PRG

= Dishonest Majority

=« [IKLPO6]

= Blackbox

= Polynomial number of rounds
= [KOSO03]

= generic ZK

= O(log(n)) rounds
= [MF06,Wo0007,LP07,]JS07]

= Constant round

= No generic ZK

= Only two-party case

i Goal

= Combine all the good properties
=« Round and communication efficiency
= Avoiding generic ZK
= Handle dishonest majority

s Settle for Covert Adversaries

i Contributions

= [wo-party Case
= Improve communication
= Malicious and covert adversaries

= Multiparty Case
= Avoids generic ZK
= O(log(n)) rounds
= Covert Adversaries

Two-party Overview

OTs for P,’s input keys

— e — \

|
: _— t Pz

GC[t] [— /

Challenge e

Open all except for GCl[e]

P, evaluates GC[e]

i TWO-Party Improvements

= Circuits generated pseudo randomly
= Only hashes of circuits sent over
= Seeds are revealed for opened circuits

= Reduced OT communication
= Only first few steps of OTs are executed
initially
= Receiver committed to his inputs
= Sufficient for simulation to go through

Two-party Improvements

h: hash function; G: PRG

sy — 1, G(s),

GC[1]« Garble(G(s,)) com(s,), com(h(GC[1]))
| ' V
| : "2
s — 1%, G(sy), com(s), com(h(GC[t]))
GC[t]— Garble(G(s,))]
Challenge e

Reveal all seeds except s,

Send GC[e], P, evaluates GC[e]

i Two-party Improvements

= Communication
» Undetected cheating prob. 1/t
= O(|C| + t) instead of O(t|C|)
= Can handle larger t
= More incentive not to cheat

= Malicious adversaries
= Similar techniques work
= Have not analyzed asymptotically

i Multiparty Case

= Modify [BMR90] garbled circuit
construction

= Run the protocol in t session

= Each session performed using
semihonest SFE

s Perform cut-and-choose

i Modified BMR

= A mask bit AW for every wire w

O Pi holds)\iW
s A =AY AN g g AW
= for P;’s input bit x¥ let

XY o AW

= Two random keys kw0, kw1 for wire w
n PI hOIdS kiW’O, kiW,l
s KW= k"D | k™[] [kg™

i Modified BMR

= P, expands his keys to one-time pads
n p0, g0 — G(k"%)
= p, gt G(k"1)
= Garbled NAND gate g:
= input wires a,b
= output wire c

i Modified BMR

" g(olo) — pla'o@ e D pnalo@ plblga @ pnb,o
KOl ... || k.0 if 22 NAND AP=)¢
®1 Kked|.. | ket otherwise

s X2 N=0; xP o Ab=10

= (x2 NAND x) @ A° = (A NAND AP) @ AS
= Similarly for g(0,1), g(1,0) and

g(1,1)

9(0,0)

9(0,1)

9(1,0)

g(1,1)

i Main Modifications

= Inputs not embedded in garbled circuit
= Opening a circuit does not reveal inputs

= Garbling done using a semi-honest SFE
= Parties commit to their random coins
= Run multiple semi-honest sessions

» Cheating is detected through cut-and-
choose

i Sub-Protocols

= PublicCoinFlip
0 (1k,..., 1k) — (G Iy, 0)
=« [CR87, KOS03] O(logn) rounds
= Simulatable Commitments
« Commit: (0;%y,...,X,) — ({com(x)}, ..., {com(x)})
= Open: P, opens com(x)
= CommittedCoinFlipToAll
= (0;1%,...,1K) — (com(e), ..., com(e))
= CommittedCoinFlipToP,
= (0;1%,...,1) — (com(e), ..., e, ..., com(e))

i Main Protocol

CRS generation
0 «— PublicCoinFlip
Challenge generation
Com(e) <« CommittedCoinFlipToAll(o)
Committing to randomness
For each player i, for each session S in [1..t]
- 1;[S] « CommittedCoinFlipToP,(0)
- Expanded using pseudorandom generator
- used to generate mask bits, wire keys, semi-honest SFE randomness
Committing to Masked Inputs
P.commits to x¥ e AW[S] for his input wires w
Generating Garbled Circuits
Parties run t parallel sessions to generate garbled circuits GC[1], ... , GC[t]
Verification Phase
Parties open the committed challenge e
For each session S # e, parties open all commitments (except for masked inputs)
Evaluation Phase
For GC[e], parties open masked inputs and broadcast
Each party evaluates the garbled circuit on their own

i Summary

= Multiparty
= Covert Adversaries
= Avoid generic ZK
= Round efficient

= [wo-party

= Improved efficiency
= Covert and malicious adversaries

Thank you!

i Efficiency Measures

= Communication
= Number of bits exchanged
= Rounds
= Number of rounds of interaction
= Computation
= Local work by each party
= Practical measures
= Black-box use of underlying primitives

= Avoiding generic ZK proofs
« Efficiently implementable primitives

