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Application: Digital Lockers

• An object with a combination lock

• Correctness:

– Store content

– Recover content (with password)

• Secrecy:

– Content is as secure as the password.

– The only way of opening a DL is by 

guessing the password

Encryption is not enough because we have 

weak passwords.



Digital Lockers

Insecure Secure



Digital Locker - Correctness

• A DL is a couple of algorithms lock and

unlock.

• Correctness: 

unlock(pass,lock(pass,content))=content

• Probabilistic version allow for negligible 

correctness error.



Digital Locker - Secrecy

• Recovering content is as hard as 

guessing the password.

• Simulation-based definition

Lock(pass,content)

If pass is correct, 

reveal content
≈



Digital Lockers vs Encryption 

Schemes

• Encryption guarantees no security unless key is 

uniform.

• Password-based encryption assume  minimum 

entropy on the key space.

• DL do not assume anything about the password. 

• DL protects the password.

• DL does not protect against dictionary attacks. It 

ensures that such attacks are the only ones 

possible.
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Obfuscation

gcc



Definition [B+01]
• O is an obfuscator for a family of functions, 

F if:

– Approximate functionality: O(F)≈F

– Polynomial slowdown: Running time of O(F)
is comparable to that of F.

– Virtual Blackbox: whatever can be computed 
from O(F) can be computed from the 
input/output of F.

O(F)

≈
F

x

F(x)



Virtual Blackbox

x + 1x2x2

x32

For any nonuniform PPT and any polynomial p, there exists a nonuniform

PPT S such that for any F 2F and su± cient ly large n:

For any nonuniform PPT and any polynomial p, there exists a nonuniform

PPT S such that for any F 2F and su± cient ly large n:

AAA

For any e± cient adversary A and any poly-

nom ial p, t here exist s an e± cient simulat or S

such t hat for any F 2 F and su± cient ly large

n:

jP r [b Ã A( O( F ) ) : b = 1]¡ P r [b Ã SF ( 1n) : b = 1]j

·
1

p( n)
:



Multibit Point Functions

Fx;y( z) =

(
y if z = x

0 if z 6= x

A point function with multibit output outputs a long 

string on a single point and 0 everywhere else.



DL vs Point Function Obfuscation

• DL from obfuscation of multibit point 

functions:

• Next: Obfuscating multibit point 

functions…

lock(pass; content) = O(Fpass;content )



Previous Results on Point Function 

Obfuscation
• Obfuscation of point functions is known [C97,CMR98,W05].

• [LPS04] has a Random Oracle obfuscation for multibit point 
functions (where r is uniform):

• [FKSW05] has a multibit point function obfuscation for uniform x (G 
is a pseudorandom generator) :

• [W05] realizes [LPS04] construction for output with log length.

OR1;R2(Fx;y) = r; R1( x; r ) ; R2( x; r ) © y

O( Fx;y) = G( x) © ( 0ny)
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The Construction

• The class of functions:

• The tool: An obfuscator, H, for point 

functions (more about that later).

F = f Fx;y : x; y 2 f 0; 1gng

Fx ( y) =

(
1 if y = x

0 if y 6= x

A point function outputs 1 on a single point 

and 0 everywhere else.



The First Attempt
y = 1 0 ::: 0 1

# # ::: # #

O( Fx;y) = H ( Fx ) ; H ( Fx ) ; H ( FUn
) ; ::: H ( FUn

) ; H ( Fx )

O( Fx;y) = u1; u2; u3; ::: un ; un+ 1

As such, this is just a string. The construction  needs 

some processing code: input : a

const ant : u1; u2; :::; un + 1

i f u1(a) = 0 t hen1

r et ur n 0;2

else3

for i Ã 2 t o n + 1 do4

i f ui (a) = 1 t hen5

yi Ã 1;6

else7

yi Ã 0;8

r et ur n y = y1; :::; yt ;9

end10
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Analysis

• H has to be a probabilistic obfuscator.

• We would like to prove security based on 

this assumption only. 

• However, this is not sufficient.

• H has to be secure under “composition” or 

concatenation.

• Example: should not 

reveal x, if x is uniform.
H (x; r1) ; H (x; r2)



On Noncomposable Obfuscators 
• Suppose we have an obfuscator that looks like:

• Then, it is completely insecure under composition.

• x can be recovered by solving the linear system:

• Applies also for obfuscator with auxiliary input [GK05]

H (Fx ; r = ( r1; r 2) ) = H 0( x; r 1) ; r 2; < x; r 2 > :

0

B
B
B
@

r 1

r 2
...

r t

1

C
C
C
A

x =

0

B
B
B
@

< x; r 1 >

< x; r 2 >
...

< x; r t >

1

C
C
C
A

:



A Composable Definition of 

Obfuscation

• Virtual Blackbox [LPS04]:
For any e± cient adversary A and any poly-

nomial p, t here exist s an e± cient simulat or S

such t hat for any F 2 F and su± cient ly large

n:

jP r [b Ã A( O( F ) ) : b = 1]¡ P r [b Ã SF ( 1n) : b = 1]j ·
1

p( n)
:

For any e± cient adversary A and any poly-

nomial p, t here exist s an e± cient simulat or S

such t hat for any F1; :::; Ft ( n) 2 F and su± -

cient ly large n:

jP r [b Ã A( O( F1) ; :::; O( Ft ( n) ) ) : b = 1]¡ P r [b Ã S
F1 ;:::;Ft ( n) ( 1n) : b = 1]j ·

1

p( n)
:



Analysis Based on Perfectly One-

way functions

• We do not know if composable 
obfuscation of point functions exist.

• The closest primitive is Perfectly one-way
(POW) function.

• We use statistical POW function in our 
construction to get obfuscation.

• We use computational POW function to 
get a weak version of obfuscation (when x 
and y are independent).



POW functions

• Secrecy: A sequence of hashes of the 

same input is indistinguishable from a 

sequence of hashes of independent and 

uniform strings.

H(x); :::; H (x) H(Un ); :::; H (Un )

≈



From Statistical POW Functions to 

Multibit Point Function Obfuscation

T heorem. If H is a statistical POW function then the

construction is an obfuscation of multibit point functions.

Proof highlights:

² Given: For any high-entropy distr ibution, X ,

H (X ); :::; H (X ) is statistically close to W = (H (Un ); ::::; H (Un )).

² Then, O(FX ;Y ) is close to W .

² Then, for every machine and all but polynomially-many x (call this set

L ): O(Fx ;y ) is indistinguishable from W .

² We construct a simulator, S. S receives the \ bad" L as advice str ing. I f

the oracle accepts x 2 L , S runs the adversary, A, on O(Fx ;y ). Otherwise,

it runs A on W .



From Computational POW 

Function
• The previous proof does not follow in the computational 

case.

• Why? 

• Because y can depend on x.

• The result holds if y is independent of x.

² Given: For any high-entropy distribution, X ,

H (X ); :::; H (X ) is statistically close to W = (H (Un ); ::::; H (Un )).

² Then, O(FX ;Y ) is close to W.

We use the fact that statistical difference between two 

distributions does not increase by applying a function on 

them: ¢ (f (A); f (B)) · ¢ (A; B)



Summary
Construction

Assumption
Composable 

Obfuscation
Obfuscation

Weak 

Obfuscation

Obfuscation of 

Point Functions

[W05], [C97]
No No No

Computational 

POW functions

[C97]

?? ?? Yes

Statistical POW 

Functions

[Unknown]

?? Yes Yes

Composable 

Obfuscation of 

Point Functions

[Unknown]

Yes Yes Yes
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The Definition: Is It Sufficient?

• Problem: does not rule out constructions insecure on a 
small set of input

• Example: DL breaks on all English words!

• This is not surprising: 
– Running time of adversary and simulator are not tightly related.

• A general weakness in the definition of obfuscation

• Suggested Solution: number of queries the simulator 
makes is proportional to running time of A.

• Ongoing work…



More Formally

D ef 3 ( t-secur e Obfuscat ion) For any e± cient adver sar y A and any

polynomial p, t her e exist s an e± cient simulat or S such t hat for any

F 2 F and su± cient ly lar ge n:

jPr [b Ã A(O(F )) : b = 1] ¡ Pr [b Ã SF (1n ) : b = 1]j ·
1

p(n)
;

D ef 3 ( t-secur e Obfuscat ion) For any e± cient adver sar y A and any

polynomial p, t her e exist s an e± cient simulat or S such t hat for any

F 2 F and su± cient ly lar ge n:

jPr [b Ã A(O(F )) : b = 1] ¡ Pr [b Ã SF (1n ) : b = 1]j ·
1

p(n)
;

A 2 = F 5
4

D ef 3 ( t-V ir t ual B lackbox)

For any e± cient adversar y A and any polynomial p, t her e exist s an

e± cient simulat or S such t hat for any F 2 F and su± cient ly lar ge n:

jPr [b Ã A(O(F )) : b = 1] ¡ Pr [b Ã SF (1n ) : b = 1]j ·
1

p(n)
;

where S makes at most t(RA ;F ; n; p) queries and RA ;F is the worst -case running

t ime of A on O(F ), taken over the coin tosses of A and O.

t-secure DL  DL doesn’t reveal content on, 

say, more than t(n) + t(n)/(n-1) passwords.



Questions???


