Strongly Multiplicative Ramp Schemes From High Degree Rational Points on Curves

> Hao Chen East China Normal University

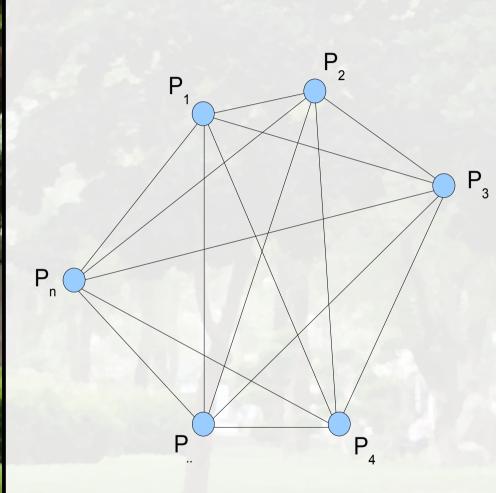
Robbert de Haan CWI Ronald Cramer CWI & Leiden University

Ignacio Cascudo Pueyo Oviedo University

Overview

- Multi-Party Computation
 - Model
 - Goal
- Applications
- Basic construction
- Recent improvements
- Our results

Multi-Party Computation: Model



- n players
- Perfectly authenticated secure channels
- Authenticated broadcast
- Players computationally unbounded
- t-Adversary jointly controls up to t players
 - passively, or
 - actively.

Multi-Party Computation: Goal

- Computing a function *F* ∈ *K*[*X*₁,..,*X*_n] on the inputs of the *n* players with
 - perfect privacy, and
 - perfect correctness (zero-error).

Multi-Party Computation: Goal

- Computing a function *F* ∈ *K*[*X*₁,...,*X*_n] on the inputs of the *n* players with
 - perfect privacy, and
 - perfect correctness (zero-error).
- t-Adversary jointly controls up to t players
 - passively (eavesdropping only), or
 - actively (deviates from the protocol).

Multi-Party Computation: Goal

- Computing a function *F* ∈ *K*[*X*₁,...,*X*_n] on the inputs of the *n* players with
 - perfect privacy, and
 - perfect correctness (zero-error).
- t-Adversary jointly controls up to t players
 - passively (eavesdropping only), or
 - actively (deviates from the protocol).
- Existence such protocols:
 - For a passive t-adversary if and only if t<n/2.</p>
 - For an active t-adversary if and only if t<n/3.</p>

Recently Found Connections

- Zero-knowledge from zero-error MPC (IKOS07):
 - Idea:
 - Let the prover run an MPC protocol that verifies a witness.
 - Let the verifier randomly open some views to verify correctness.
 - Example result: Near constant-rate ZK when one can use bounded fan-in verification circuits.

Recently Found Connections

- Zero-knowledge from zero-error MPC (IKOS07):
 - Idea:
 - Let the prover run an MPC protocol that verifies a witness.
 - Let the verifier randomly open some views to verify correctness.
 OT combiners from MPC (HIKN08):
 - Idea:
 - Two parties together emulate n pairs of players that each use one of the candidate combiners.
 - Faulty combiners correspond to corrupt players in the MPC.
 - Example result: Constant-rate OTs from a noisy channel.

Recently Found Connections

- Zero-knowledge from zero-error MPC (IKOS07):
 - Idea:
 - Let the prover run an MPC protocol that verifies a witness.
 - Let the verifier randomly open some views to verify correctness. OT combiners from MPC (HIKN08):
 - Idea:
 - Two parties together emulate n pairs of players that each use one of the candidate combiners.
 - Faulty combiners correspond to corrupt players in the MPC.
 - Communication cost of these protocols is proportional to communication cost of the underlying MPC protocol.
 - > => We want low communication MPC!

- Shamir secret sharing:
 - Secret $s \in K$ and $x_1, x_2, \dots, x_n \in K$ non-zero, distinct.
 - Degree-*t* polynomial $f \in K[X]$ with f(0)=s.
 - Shares $f(x_1), f(x_2), ..., f(x_n)$.

- Shamir secret sharing:
 - Secret $s \in K$ and $x_1, x_2, \dots, x_n \in K$ non-zero, distinct.
 - Degree-*t* polynomial $f \in K[X]$ with f(0)=s.
 - Shares $f(x_1), f(x_2), ..., f(x_n)$.
- Linearity:
 - Shares for s and $u \rightarrow$ shares for s+u.
 - Shares for s, constant $c \rightarrow$ shares for cs.

- Shamir secret sharing:
 - Secret $s \in K$ and $x_1, x_2, \dots, x_n \in K$ non-zero, distinct.
 - Degree-*t* polynomial $f \in K[X]$ with f(0)=s.
 - Shares $f(x_1), f(x_2), ..., f(x_n)$.
- Linearity:
 - Shares for s and $u \rightarrow$ shares for s+u.
 - Shares for s, constant $c \rightarrow$ shares for cs.

Multiplication property for t < n/2:
 su = ∑ η f(x)g(x) (where g degree-t with g(0)=u).

- Shamir secret sharing:
 - Secret $s \in K$ and $x_1, x_2, \dots, x_n \in K$ non-zero, distinct.
 - Degree-*t* polynomial $f \in K[X]$ with f(0) = s.
 - Shares $f(x_1), f(x_2), ..., f(x_n)$.
- Linearity:
 - Shares for s and $u \rightarrow$ shares for s+u.
 - Shares for s, constant $c \rightarrow$ shares for cs.
- Multiplication property for t < n/2:</p>
 - $su = \sum \eta_i f(x_i)g(x_i)$ (where g degree-t with g(0)=u).
- Strong multiplication property for t < n/3.</p>
 - Multiplication property on subsets with any *n*-t players.

Multi-Party Computation from LSSS

- Passive adversary protocol steps:
 - Every player secret shares his input using the selected secret sharing scheme.
 - Players locally perform addition and multiplication with a constant on the values.
 - Players interact to perform multiplications using the multiplication property.

Multi-Party Computation from LSSS

- Passive adversary protocol steps:
 - Every player secret shares his input using the selected secret sharing scheme.
 - Players locally perform addition and multiplication with a constant on the values.
 - Players interact to perform multiplications using the multiplication property.
- Active adversary requires additional verification steps for secret sharing and multiplication
 - Can be bootstrapped from strongly multiplicative secret sharing schemes.

- Size shares \geq size secret.
 - Unavoidable for perfect secret sharing schemes.

- Size shares \geq size secret.
 - Unavoidable for perfect secret sharing schemes.
- |K| = o(n).
 - Unavoidable for ideal threshold secret sharing schemes, due to correspondence with MDS codes.

- Size shares \geq size secret.
 - Unavoidable for perfect secret sharing schemes.
- |K| = o(n).
 - Unavoidable for ideal threshold secret sharing schemes, due to correspondence with MDS codes.
- Note that the communication complexity of a multi-party computation protocol is proportional to the efficiency of the underlying secret sharing scheme.

- Size shares \geq size secret.
 - Unavoidable for perfect secret sharing schemes.
- |K| = o(n).
 - Unavoidable for ideal threshold secret sharing schemes, due to correspondence with MDS codes.
- Note that the communication complexity of a multi-party computation protocol is proportional to the efficiency of the underlying secret sharing scheme.
- We consider several ramp schemes that get around one or both of these limitations.

- Exploiting the structure of the function *F*:
 - Franklin and Yung 1991 (parallel multiplications)
 - CDH 2007 (extension field multiplication)

- Exploiting the structure of the function *F*:
 - Franklin and Yung 1991 (parallel multiplications)
 - CDH 2007 (extension field multiplication)
- Enabling small fields:
 - Chen and Cramer 2006 (algebraic geometry codes)
 - CCGHV 2007 (arbitrary error correcting codes)

- Exploiting the structure of the function *F*:
 - Franklin and Yung 1991 (parallel multiplications)
 - CDH 2007 (extension field multiplication)
- Enabling small fields:
 - Chen and Cramer 2006 (algebraic geometry codes)

generalizes

CCGHV 2007 (arbitrary error correcting codes)

- Exploiting the structure of the function F:
 - Franklin and Yung 1991 (parallel multiplications)
 CDH 2007 (extension field multiplication) ?
- Enabling small fields:
 - Chen and Cramer 2006 (algebraic geometry codes)

generalizes

CCGHV 2007 (arbitrary error correcting codes)

- Exploiting the structure of the function *F*:
 - Franklin and Yung 1991 (parallel multiplications)
 CDH 2007 (extension field multiplication) ?
 - Enabling small fields:
 - Chen and Cramer 2006 (algebraic geometry codes)
 - CCGHV 2007 (arbitrary error correcting codes)
- This work:
 - Replacement scheme CDH 2007, optimized parameters.
 - Generalization "CDH 2007" that enables to use small fields.
 - Low communication active adversary protocols for this general scheme and CC06.

generalizes

 Perform multiplication in a finite field using communication and operations only involving elements in a subfield.

- Perform multiplication in a finite field using communication and operations only involving elements in a subfield.
- Let $L = K(\alpha)$ with [L:K] = k.
 - Secret $s_0 + s_1 \alpha + \dots + s_{k-1} \alpha^{k-1} \in L$.
 - Polynomial f(X) = s₀ + s₁X + ... + s_{k-1}X^{k-1} + r(X)X^{2k-1} ∈ K[X], with r(X) ∈ K[X] of degree at most t-1.
 Shares f(x₁), f(x₂),...,f(x_k) with x₁, x₂,..., x_k ∈ K distinct, nonzero.

- Perform multiplication in a finite field using communication and operations only involving elements in a subfield.
- Let $L = K(\alpha)$ with [L:K] = k.
 - Secret $s_0 + s_1 \alpha + \dots + s_{k-1} \alpha^{k-1} \in L$.
 - Polynomial $f(X) = s_0 + s_1 X + ... + s_{k-1} X^{k-1} + r(X) X^{2k-1} \in K[X]$, with $r(X) \in K[X]$ of degree at most t-1.
 - Shares $f(x_1), f(x_2), \dots, f(x_k)$ with $x_1, x_2, \dots, x_n \in K$ distinct, nonzero.

Parameters

- t-privacy
- t+2k-1 reconstruction

- Perform multiplication in a finite field using communication and operations only involving elements in a subfield.
- Let $L = K(\alpha)$ with [L:K] = k.
 - Secret $s_0 + s_1 \alpha + \dots + s_{k-1} \alpha^{k-1} \in L$.
 - Polynomial $f(X) = s_0 + s_1 X + ... + s_{k-1} X^{k-1} + r(X) X^{2k-1} \in K[X]$, with $r(X) \in K[X]$ of degree at most t-1.
 - Shares $f(x_1), f(x_2), \dots, f(x_k)$ with $x_1, x_2, \dots, x_n \in K$ distinct, nonzero.
- Parameters
 - t-privacy
 - t+2k-1 reconstruction
- Multiplication property for t+2k-2 < n/2.</p>

- For $y \in L$, define w(y) := [K(y) : K].
- Theorem:
 - Take $y_1, y_2, ..., y_i \in L$ such that no $y_i \neq y_i$ are Galois conjugate.
 - Then for any $b_1, b_2, ..., b_i$ with $b_i \in K(y_i)$, there is a unique polynomial $f(X) \in K[X]$ of degree at most $(\sum w(y_i)) 1$ such that $f(y_i) = b_i$ for i = 1, 2, ..., I.

• New scheme: Let $L = K(\alpha)$ with [L : K] = k.

- Secret $s \in L$.
- Select $e \in L$ such that [K(e) : K] = k.
- Select random polynomial *f* ∈ *K*[X] of degree at most *t*+*k*-1 such that *f*(*e*) = *s*.

• Shares $f(x_1), f(x_2), ..., f(x_n)$.

• New scheme: Let $L = K(\alpha)$ with [L : K] = k.

- Secret $s \in L$.
- Select $e \in L$ such that [K(e) : K] = k.
- Select random polynomial *f* ∈ *K*[X] of degree at most *t*+*k*-1 such that *f*(*e*) = *s*.
- Shares $f(x_1)$, $f(x_2)$, ..., $f(x_n)$.
- Parameters
 - *t*-privacy
 - (t+k)-reconstruction

• New scheme: Let $L = K(\alpha)$ with [L : K] = k.

- Secret $s \in L$.
- Select $e \in L$ such that [K(e) : K] = k.
- Select random polynomial *f* ∈ *K*[X] of degree at most *t*+*k*-1 such that *f*(*e*) = *s*.
- Shares $f(x_1), f(x_2), ..., f(x_n)$.
- Parameters
 - *t*-privacy
 - (t+k)-reconstruction
- Multiplication property for t+k-1 < n/2.

• New scheme: Let $L = K(\alpha)$ with [L : K] = k.

- Secret $s \in L$.
- Select $e \in L$ such that [K(e) : K] = k.
- Select random polynomial *f* ∈ *K*[X] of degree at most *t*+*k*-1 such that *f*(*e*) = *s*.
- Shares $f(x_1)$, $f(x_2)$, ..., $f(x_n)$.
- Parameters
 - *t*-privacy
 - (t+k)-reconstruction
- Multiplication property for t+k-1 < n/2.</p>
- This scheme extends to the algebraic curve setting.

Sketch Shamir vs Algebraic Geometry SS

- Shamir SS
 - Points $x_i \in K$.
 - Polynomials *f* ∈ *K*[X] of degree at most *t*.
 - Secret $s = f(x_0) \in K$.
 - Shares $f(x_i) \in K$.

- Algebraic geometry SS
 - Projective points P_i on a suitable curve C.
 - K-rational functions
 h=f/g ∈ L(D), where L(D) is
 some t-dimensional
 Riemann Roch space.
 - Secret $s = h(P_{o}) \in K$.
 - Shares $h(P_i) \in K$.

Sketch Shamir vs Algebraic Geometry SS

- Shamir SS
 - At most |K| distinct evaluation points.
 - *t*-privacy.
 - (t+1)-reconstruction.

- Algebraic geometry SS
 - Can use all points on C, potentially many more than |K|.
 - t-privacy.
 - (t+1+g)-reconstruction.

Sketch Shamir vs Algebraic Geometry SS

- Shamir SS
 - At most |K| distinct evaluation points.
 - *t*-privacy.
 - (t+1)-reconstruction.

- Achieves multiplication property for optimal t < n/2.
- Achieves strong mult. property for optimal t < n/3.

- Algebraic geometry SS
 - Can use all points on C, potentially many more than |K|.
 - *t*-privacy.
 - (t+1+g)-reconstruction.
 - Achieves multiplication property for near-optimal *t* < (1/2-ε)n.
 - Achieves strong mult.
 Property for near-optimal t < (1/3-ε)n.

Let

- Let C be a smooth, projective, irreducible curve over F_{a} .
- $D = \{P_1, P_2, \dots, P_n\}$ be a set of F_a -rational points on C.
- G be an F_q -rational divisor of degree 2g+t+k-1 with support(G) $\cap D = \{\}$.
- Q be an F_{a^k} -rational point that is not F_{a^t} -rational for t < k.
- The secret is $s \in F_{a^k}$.

Let

- Let C be a smooth, projective, irreducible curve over F_{a} .
- $D = \{P_1, P_2, \dots, P_n\}$ be a set of F_a -rational points on C.
- G be an F_q -rational divisor of degree 2g+t+k-1 with $support(G) \cap D = \{\}$.
- Q be an F_{a^k} -rational point that is not F_{a^t} -rational for t < k.
- The secret is $s \in F_{a^k}$.
- To secret share s:
 - Select random F_{q} -rational function $f \in L(G)$ such that f(Q) = s.
 - The shares are $f(P_1), f(P_2), \dots, f(P_n)$.

- To secret share s:
 - Select random F_{q} -rational function $f \in L(G)$ such that f(Q) = s.
 - The shares are $f(P_1), f(P_2), \dots, f(P_n)$.
- Parameters:
 - *t*-privacy
 - (2g+t+k)-reconstruction

- To secret share s:
 - Select random F_{a} -rational function $f \in L(G)$ such that f(Q) = s.
 - The shares are $f(P_1), f(P_2), \dots, f(P_n)$.
- Parameters:
 - *t*-privacy
 - (2g+t+k)-reconstruction
- Multiplication property for $n \ge 4g+2t+2k-1$.
 - We specify how to determine the corresponding equation in the paper.

Final remarks

- We additionally describe general low communication MPC protocols for the algebraic geometric schemes secure against an active adversary.
 - Somewhat technical due to the lack of the convenient polynomial structure introduced by Shamir-type schemes.
 - For the new scheme and $t, k = \Theta(n)$, we can perform multiplications in F_{q^k} at a communication cost of $O(n^3)$ elements in F_q .
 - This matches CDH07. However, the size of the field F_q can now be chosen independent of the number of players *n*.

Strongly Multiplicative Ramp Schemes From High Degree Rational Points on Curves

> Hao Chen East China Normal University

Robbert de Haan CWI Ronald Cramer CWI & Leiden University

Ignacio Cascudo Pueyo Oviedo University