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Computing a function F ∈ K [X
1
,..,X

n
] on the inputs of the n 

players with
perfect privacy, and
perfect correctness (zero-error).

t-Adversary jointly controls up to t players
passively (eavesdropping only), or
actively (deviates from the protocol).

Existence such protocols:
For a passive t-adversary if and only if t<n/2.
For an active t-adversary if and only if t<n/3.



Recently Found Connections

Zero-knowledge from zero-error MPC (IKOS07):
Idea:

Let the prover run an MPC protocol that verifies a witness.
Let the verifier randomly open some views to verify correctness.

Example result: Near constant-rate ZK when one can use 
bounded fan-in verification circuits.
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Recently Found Connections

Zero-knowledge from zero-error MPC (IKOS07):
Idea:

Let the prover run an MPC protocol that verifies a witness.
Let the verifier randomly open some views to verify correctness.

OT combiners from MPC (HIKN08):
Idea:

Two parties together emulate n pairs of players that each use 
one of the candidate combiners.
Faulty combiners correspond to corrupt players in the MPC.

Communication cost of these protocols is proportional to 
communication cost of the underlying MPC protocol.

 => We want low communication MPC!
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Multiplication property for t < n/2:
su = ∑ η

i
 f(x

i
)g(x

i
)            (where g degree-t with g(0)=u).

Strong multiplication property for t < n/3.
Multiplication property on subsets with any n-t players.
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Multi-Party Computation from LSSS

Passive adversary protocol steps:
Every player secret shares his input using the selected secret 
sharing scheme.
Players locally perform addition and multiplication with a 
constant on the values.
Players interact to perform multiplications using the 
multiplication property.

Active adversary requires additional verification steps for 
secret sharing and multiplication

Can be bootstrapped from strongly multiplicative secret 
sharing schemes.
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Size shares ≥ size secret.
Unavoidable for perfect secret sharing schemes.

|K| = o(n).
Unavoidable for ideal threshold secret sharing schemes, due 
to correspondence with MDS codes.

Note that the communication complexity of a multi-party 
computation protocol is proportional to the efficiency of the 
underlying secret sharing scheme.

We consider several ramp schemes that get around one or 
both of these limitations.
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Recent Efficient Ramp Schemes

Exploiting the structure of the function F:
Franklin and Yung 1991 (parallel multiplications)
CDH 2007 (extension field multiplication)

Enabling small fields:
Chen and Cramer 2006 (algebraic geometry codes)
CCGHV 2007 (arbitrary error correcting codes)

This work:
Replacement scheme CDH 2007, optimized parameters.
Generalization “CDH 2007” that enables to use small fields.
Low communication active adversary protocols for this general 
scheme and CC06.

generalizes
?
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Parameters
t-privacy
t+2k-1 reconstruction

Multiplication property for t+2k-2 < n/2.



New Basic Scheme (1)

For y ∈ L, define w(y) := [K(y) : K].
Theorem:
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i
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f(y
i
) = b

i
 for i = 1, 2, ..., l.
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New scheme: Let L = K(α) with [L : K] = k.
Secret s ∈ L.
Select e ∈ L such that [K(e) : K] = k.
Select random polynomial f  ∈ K[X] of degree at most t+k-1 
such that f(e) = s.
Shares f(x

1
), f(x

2
), ..., f(x

n
).

Parameters
t-privacy
(t+k)-reconstruction

Multiplication property for t+k-1 < n/2.
This scheme extends to the algebraic curve setting.



Sketch Shamir vs Algebraic Geometry SS

Shamir SS
Points x

i
 ∈ K.

Polynomials f ∈ K[X] of 
degree at most t.
Secret s = f(x

0
) ∈ K.

Shares f(x
i
) ∈ K.

Algebraic geometry SS
Projective points P

i
 on a 

suitable curve C.
K-rational functions

    h=f/g  ∈ L(D), where L(D) is 
some t-dimensional 
Riemann Roch space.
Secret s = h(P

0
) ∈ K.

Shares h(P
i
) ∈ K.
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Sketch Shamir vs Algebraic Geometry SS

Shamir SS
At most |K| distinct 
evaluation points.
t-privacy.
(t+1)-reconstruction.

Achieves multiplication 
property for optimal t < n/2.
Achieves strong mult. 
property for optimal t < n/3.

Algebraic geometry SS
Can use all points on C, 
potentially many more than 
|K|.
t-privacy.
(t+1+g)-reconstruction.

Achieves multiplication 
property for near-optimal    
t < (1/2-ε)n.
Achieves strong mult. 
Property for near-optimal   
t < (1/3-ε)n.
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New Algebraic Geometric Ramp Scheme

To secret share s:
Select random F

q
-rational function f ∈ L(G) such that f(Q) = s.

The shares are f(P
1
),f(P

2
),...,f(P

n
).

Parameters:
t-privacy
(2g+t+k)-reconstruction

Multiplication property for n ≥ 4g+2t+2k-1.
We specify how to determine the corresponding equation in 
the paper.



Final remarks

We additionally describe general low communication MPC 
protocols for the algebraic geometric schemes secure 
against an active adversary.

Somewhat technical due to the lack of the convenient 
polynomial structure introduced by Shamir-type schemes.
For the new scheme and t,k = Θ(n), we can perform 
multiplications in F

qk at a communication cost of O(n3) 
elements in F

q
.

This matches CDH07. However, the size of the field F
q
 can 

now be chosen independent of the number of players n.
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