Predicting Lattice reduction

Nicolas Gama, Phong Nguyen

Ecole Normale Supérieure, CNRS, INRIA, France.

April 14, 2008

Nicolas Gama, Phong Nguyen (Ecole Nov Predicting Lattice reduction

Central Questions

- What is the concrete hardness of Lattice problems?
- How to select security parameters for a lattice-based cryptosystems?
- What is the best practical lattice reduction algorithm?
- Can we predict the output of lattice reduction algorithms without running them?

Part 1:

Introduction

Nicolas Gama, Phong Nguyen (Ecole Nov Predicting Lattice reduction

æ

Everything is easy (1982-)

- Many cryptosystems broken by LLL.
- "If the cryptosystem is related to lattices, then it must be insecure"

Everything is easy (1982-)

- Many cryptosystems broken by LLL.
- "If the cryptosystem is related to lattices, then it must be insecure"

Everything is hard (1996-)

- "Lattice problems are NP-hard, even with small approximation factor"
- Worst-case to average-case reductions

Everything is easy (1982-)

- Many cryptosystems broken by LLL.
- "If the cryptosystem is related to lattices, then it must be insecure"

Everything is hard (1996-)

- "Lattice problems are NP-hard, even with small approximation factor"
- Worst-case to average-case reductions

Finding the truth...

Is the goal of this article.

Question

I have a cryptosystem, whose security is related to lattices.

э

Question

I have a cryptosystem, whose security is related to lattices.

Cryptography

Choose parameters for the cryptosystem. (rarely done in papers presenting new lattice cryptosystems)

Question

I have a cryptosystem, whose security is related to lattices.

Cryptography

Choose parameters for the cryptosystem. (rarely done in papers presenting new lattice cryptosystems)

Cryptanalysis

Predict whether an attack will work without implementing it, without being too optimistic, nor too pessimistic.

Status of Lattice theory:

- Many theoretical articles.
- Theoretical bounds far from reality
 - "Experiments perform always better"
- Few concrete bounds
 - Or which do not match experiments
- Several unimplemented attacks turned out to fail.

Status of Lattice theory:

- Many theoretical articles.
- Theoretical bounds far from reality
 - "Experiments perform always better"
- Few concrete bounds
 - Or which do not match experiments
- Several unimplemented attacks turned out to fail.

Solution

Status of Lattice theory:

- Many theoretical articles.
- Theoretical bounds far from reality
 - "Experiments perform always better"
- Few concrete bounds
 - Or which do not match experiments
- Several unimplemented attacks turned out to fail.

Solution

- Only practice can reveal limits of lattice reduction.
- Computer science is also about computers.

Results

- Prediction of the output quality of most lattice reduction algorithms.
- Precise numerical bounds on the output quality.
- Describe the domain of lattice problems solvable in practice.
- A better understanding of limitations of lattice reduction algorithms

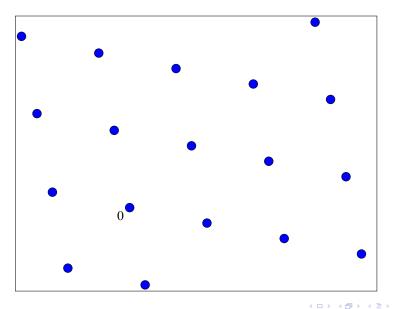
Results

- Prediction of the output quality of most lattice reduction algorithms.
- Precise numerical bounds on the output quality.
- Describe the domain of lattice problems solvable in practice.
- A better understanding of limitations of lattice reduction algorithms

Method

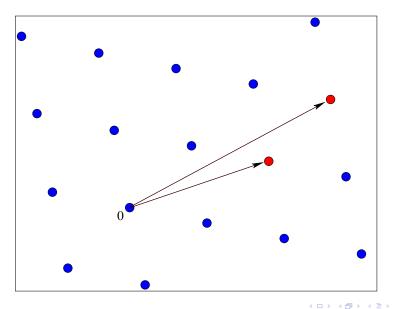
- We launched lattice reduction on several processors during 1 year.
- We draw heuristics from all these simulations.
- We have validated these heuristics using past attacks.

Lattice



글 🛌 😑

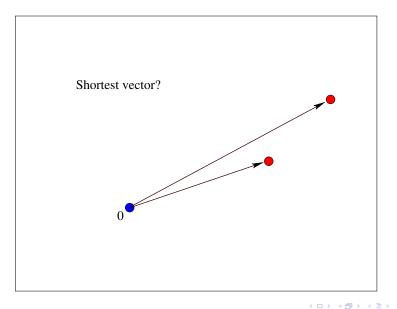
Lattice



April 14, 2008 8 / 42

글 🕨 🛛 글

Lattice



April 14, 2008 8 / 42

3

Difficult lattice problems

CVP: Closest vector problem SVP: Shortest vector problem Hard problem (even NP-Hard)

Difficult lattice problems

CVP: Closest vector problem SVP: Shortest vector problem Hard problem (even NP-Hard)

Approximations problems:

- Approx-SVP: Instead of finding the shortest vector, find a vector at most α times bigger.
- Very different than in Discrete Log, or Factorization.

Difficult lattice problems

CVP: Closest vector problem SVP: Shortest vector problem Hard problem (even NP-Hard)

Approximations problems:

- Approx-SVP: Instead of finding the shortest vector, find a vector at most α times bigger.
- Very different than in Discrete Log, or Factorization.

Mixed problems

 Unique-SVP: If there is a vector α-times smaller than any other, find-it.

Theory

- Lattice problems can all be approximated within an at most exponential factor by polynomial algorithms.
- Approximating SVP (or CVP) within a polynomial factor is very hard

Theory

- Lattice problems can all be approximated within an at most exponential factor by polynomial algorithms.
- Approximating SVP (or CVP) within a polynomial factor is very hard

Practice

- The output of Lattice reduction algorithm is indeed simply exponential
- But the constant of the exponential is very close to 1.
- So close that :
 - Approx: It is easy to approximate SVP to a factor n² in very high dimensions (n ≤ 1200).
 - *Exact:* Lattice problems are solvable exactly up to dimension 70-80, and sometimes up to dimension 300, depending on the structure of the lattice problem.

Basics on Lattice reduction algorithms

Algorithms considered:

- LLL (1982),
- semi-2k (Schnorr, 1987),
- slide (Gama-Nguyen, 2008),
- BKZ, Deep (Schnorr-Euchner, 1994).

Basics

• Every lattice reduction algorithm uses an exhaustive search subroutine.

Basics

- Every lattice reduction algorithm uses an exhaustive search subroutine.
- Except LLL and Deep.

Basics

- Every lattice reduction algorithm uses an exhaustive search subroutine.
- Except LLL and Deep.

Classification of Lattice reduction algorithms

Basics

- Every lattice reduction algorithm uses an exhaustive search subroutine.
- Except LLL and Deep.

Classification of Lattice reduction algorithms

- Theoretical algorithms
 - Proved polynomials, proved output quality.
 - In particular, number of calls to exhaustive search polynomially bounded.
 - Concerns: LLL semi-block-2k reduction Slide reduction ...

Basics

- Every lattice reduction algorithm uses an exhaustive search subroutine.
- Except LLL and Deep.

Classification of Lattice reduction algorithms

- Theoretical algorithms
 - Proved polynomials, proved output quality.
 - In particular, number of calls to exhaustive search polynomially bounded.
 - Concerns: LLL semi-block-2k reduction Slide reduction ...
- Practical algorithms
 - No bound on complexity.
 - Sometimes no bound on quality either.
 - Concerns: BKZ Deep

12 / 42

Part 2:

• Approximation algorithms

Nicolas Gama, Phong Nguyen (Ecole Nov Predicting Lattice reduction

æ

Quality of Lattice reduction:

- The length of the first vector (normalized):
 - Hermite factor: (HF) Compared to the *n*th-root of the volume $\|\vec{b}_1\|/\operatorname{vol}(L)^{1/n}$.
 - Approx factor: (AF) Compared to the shortest vector $\|\vec{b}_1\|/\lambda_1(L)$.
 - Dual factor:max_k $\|\vec{b}_1\| / \|\vec{b}_k^*\|$ where $\|\vec{b}_k^*\| = \text{distance}(\vec{b}_k, \text{span}(\vec{b}_1, \dots, \vec{b}_{k-1})).$

Theory

- Hermite Factor $\leq \sqrt{\gamma_2}^{n-1} pprox 1.07^n$
- Approx Factor $\leq \gamma_2^{n-2} \approx 1.15^n$
- There are worst case bases reaching both bounds.

э

Facts.

- A lattice contains more than one basis!
- If a particular basis can not be reduced, it does not mean that the lattice is hard to reduce.
- Theory doesn't give accurate results on the "average" among bases of the same lattice.

Facts.

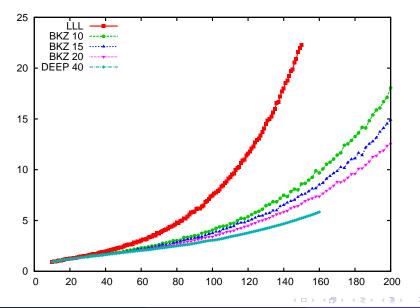
- A lattice contains more than one basis!
- If a particular basis can not be reduced, it does not mean that the lattice is hard to reduce.
- Theory doesn't give accurate results on the "average" among bases of the same lattice.

Practice

For any lattice, by randomizing the input basis, you get with LLL

- Hermite Factor $\leq 1.022^n$ (compare with 1.07^n)
- Approx Factor $\leq 1.043^n$ (compare with 1.15^n)

Hermite factors of different algorithms

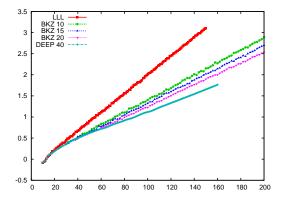


Nicolas Gama, Phong Nguyen (Ecole Noi

Predicting Lattice reduction

April 14, 2008

17 / 42



Quality of Deep, BKZ $\approx \sqrt{\text{Quality of LLL}}$.

< 돌 ▶ < 돌 ▶ 돌 ∽) Q (? April 14, 2008 18 / 42

< 行い

Theory: (Deep)

- No exhaustive search
- Simplistic svp oracle: take the smallest vector of the basis (or a projection)
- Quality: Same worst-case bases than LLL (Same theoretical upper-bounds as LLL)
- Complexity: No bound.

Practice:

• Beats BKZ in very high dimension

• Quality: 1.011"

Theory

- Hermite Factor $\leq \sqrt{\gamma_k}^{(n-1)/(k-1)}$ (better than BKZ)
- Approx Factor $\leq \gamma_k^{(n-k)/(k-1)}$ (better than BKZ)
- Polynomial (quadratic) number of calls to exhaustive search (much better than BKZ)
- Every provable indicators are better for Slide reduction than BKZ.

Theory

- Hermite Factor $\leq \sqrt{\gamma_k}^{(n-1)/(k-1)}$ (better than BKZ)
- Approx Factor $\leq \gamma_k^{(n-k)/(k-1)}$ (better than BKZ)
- Polynomial (quadratic) number of calls to exhaustive search (much better than BKZ)
- Every provable indicators are better for Slide reduction than BKZ.

Practice

- ullet Practical up to blocksize pprox 60, and "quality better than proved"
- faster than BKZ for blocksizes \geq 20
- but...

Theory

- Hermite Factor $\leq \sqrt{\gamma_k}^{(n-1)/(k-1)}$ (better than BKZ)
- Approx Factor $\leq \gamma_k^{(n-k)/(k-1)}$ (better than BKZ)
- Polynomial (quadratic) number of calls to exhaustive search (much better than BKZ)
- Every provable indicators are better for Slide reduction than BKZ.

Practice

- ullet Practical up to blocksize pprox 60, and "quality better than proved"
- ullet faster than BKZ for blocksizes \geq 20
- but...
- Hermite Factor of Slide-60≤ 1.013ⁿ

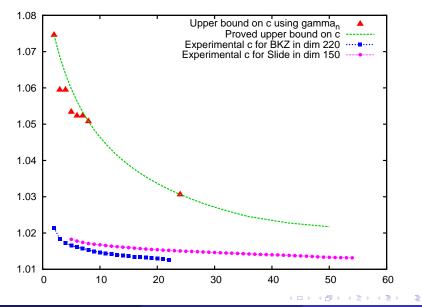
Theory

- Hermite Factor $\leq \sqrt{\gamma_k}^{(n-1)/(k-1)}$ (better than BKZ)
- Approx Factor $\leq \gamma_k^{(n-k)/(k-1)}$ (better than BKZ)
- Polynomial (quadratic) number of calls to exhaustive search (much better than BKZ)
- Every provable indicators are better for Slide reduction than BKZ.

Practice

- ullet Practical up to blocksize pprox 60, and "quality better than proved"
- ullet faster than BKZ for blocksizes \geq 20
- but...
- Hermite Factor of Slide-60≤ 1.013ⁿ
- Slide-60 beaten by BKZ-20

Comparison Slide, BKZ, proved upper-bounds



Nicolas Gama, Phong Nguyen (Ecole Nor

April 14, 2008

21 / 42

LO Knapsack Lattice, Orthogonal lattices (possibly mod(q))

- From the "standard" basis, LLL provides a HF in $2^{O(\sqrt{n})}$.
- 2 Ajtai's worst-case to average-case lattice
 - Sub-exponential HF with LLL
 - Note: They are not worst case lattices for Hermite-SVP or Aprox-SVP.
- INTRU Lattices
 - The q-vectors are small by definition!

In any case:

• One can extract a sublattice (or block) which satisfies the prediction.

- The Hermite factor of a reduction algorithm is always smaller than in a random lattice.
- Q Random lattices are worst case lattices (for Hermite factor).
- The final Hermite factor depends on the input basis
- If the basis is randomized, then it matches exactly the random lattice case:
 - HF = $\left\| ec{b}_1 \right\| / \mathrm{vol}(L)^{1/n}$ is at most simply exponential in n
 - The constant of the exponential is very small (1.021 downto 1.01)

Background

• AF can be made $\leq HF^2$

Practice

• One can effectively build worst case lattices with $AF = HF^2$

э

Background

- AF can be made $\leq HF^2$
- No better bound knowm for cryptographic lattices
- But if $\lambda_1(L) \geq \mathrm{vol}(L)^{1/n}$ then AF is already $\leq \mathrm{HF}$

Practice

• One can effectively build worst case lattices with $AF = HF^2$

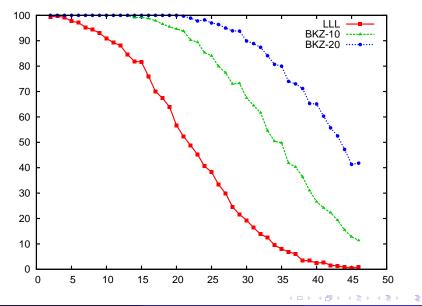
Part 3:

• Exact algorithms (very useful in cryptography)

Nicolas Gama, Phong Nguyen (Ecole Nov Predicting Lattice reduction

æ

Lattice reduction algorithms as SVP oracles



Nicolas Gama, Phong Nguyen (Ecole Nor

Predicting Lattice reduction

April 14, 2008

26 / 42

What one would expect:

• LLL is a SVP oracle up to dimension n = 2.

The reality:

• LLL is a randomized SVP oracle up to dimension 30-35 (on all lattices)

э

Theory

If Approx-SVP can be approximated to a factor 1.011^{2n} then Unique SVP with gap 1.011^{2n} can be solved.

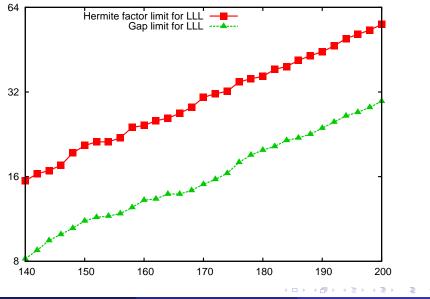
Theory

If Approx-SVP can be approximated to a factor 1.011^{2n} then Unique SVP with gap 1.011^{2n} can be solved.

Question

• Is it possible to solve Unique-SVP when the GAP is smaller than HF²?

Gap vs HF on semi-orthogonal lattices

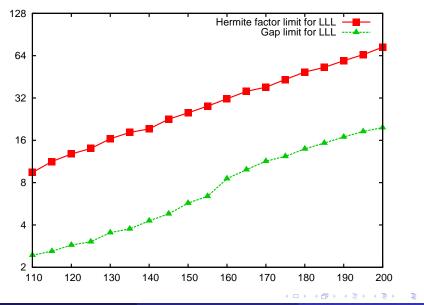


Nicolas Gama, Phong Nguyen (Ecole Noi

Predicting Lattice reduction

April 14, 2008 29 / 42

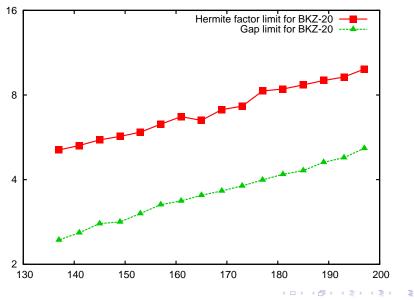
Same figure compared to LO-Lattices



Nicolas Gama, Phong Nguyen (Ecole Nor

April 14, 2008 30 / 42

Same figure for BKZ-20



Nicolas Gama, Phong Nguyen (Ecole Nor

Predicting Lattice reduction

April 14, 2008

31 / 42

Question

ullet Is it possible to solve Unique-SVP when the GAP is smaller than $\mathrm{HF}^2?$

æ

Question

• Is it possible to solve Unique-SVP when the GAP is smaller than HF²?

Experimental result

- The Gap needs to be exponential in *n* order to retrieve the shortest vector
- Ø But its order is the Hermite Factor, and not its square!

Part 4:

• Running Times

Nicolas Gama, Phong Nguyen <u>(Ecole No</u>r Predicting Lattice reduction

æ

Questions

() What is the actual running-time of BKZ (function of n, k)?

э

Questions

- What is the actual running-time of BKZ (function of n, k)?
- What is the limitation in BKZ?
 - The exhaustive search?
 - The number of calls to exhaustive search?

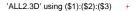
Questions

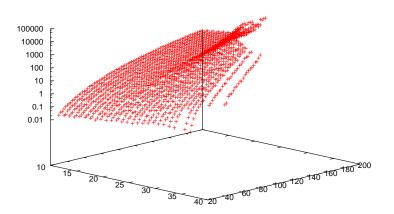
- **()** What is the actual running-time of BKZ (function of n, k)?
- What is the limitation in BKZ?
 - The exhaustive search?
 - The number of calls to exhaustive search?

Proved bounds:

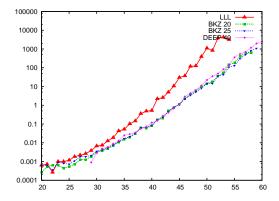
- At most doubly exponential in n and k?
- Doesn't help very much!

Overview of Experiments



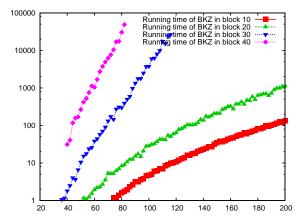


Experimental running time of exhaustive search



- Practical up to dimension 70
- Not enough to explain the complexity of BKZ

Experimental running time of BKZ



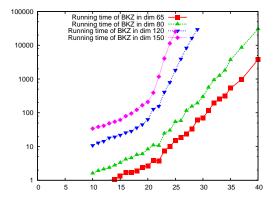
 Sub-exponential in n for fixed k ≤ 24

• looks exponential in nfor fixed $k \ge 25$

April 14, 2008

37 / 42

Experimental running time of BKZ (2)



- super
 - exponential in *k* for fixed *n*
- High increase from k ≥ 20

- If one wants a higher k in BKZ, then one must reduce the dimension.
- Reducing the time of the exhaustive search (pruning) is not enough
- Experiments: from a BKZ-20 reduced basis of NTRU107 (parameters of 1998)
 - Ex1: perform BKZ-42 in a projected block of NTRU107
 - Ex2: perform BKZ-30 in projected blocks of NTRU107 of dimension 70, starting a positions multiple of 35.
- Both retrieve the private key in 1 day.
- In comparison, BKZ-25 does not end, and does not seem to retrieve the key in its temporary variables

- We now have a clear view of the gap between theory and practice.
- We can predict the results of Lattice reduction algorithms in most cases.

- The exhaustive search, although in $2^{O(n^2)}$, works in dimension 70.
- LLL is a randomized SVP oracle (with non-negligible probability) up to dimension 30.
- Unique-SVP is solvable when the gap is linear in the Hermite-factor, not quadratic

- Explain the values of the various experimental constants
- Find better algorithms:
 - better trade-offs between the number of calls, the cost of the subroutine, and the quality
 - Is it possible to reach an HF of 1.005ⁿ in practice?
- Explain the Unique-SVP phenomenon.