New Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Lei Wang, Kazuo Ohta and Noboru Kunihiro* The University of Electro-Communications * The University of Tokyo at present.

Motivation of This Research

• HMAC has been widely applied in many protocols including SSL, TLS, SSH, IPSec and so on.

• NMAC is theoretical foundation of HMAC: attacks on NMAC (without related-key setting) can be applied to HMAC.

In this presentation, we will pick NMAC as an example.

Structure of NMAC

3

General Key-Recovery Attacks on NMAC

• Proposed by Preneel and van Oorschot in 1999:

Crucial idea: generate a collision in the inner hash function by the birthday attack.

 Obtain one pair messages (M, M') cause collision of NMAC.

2. Randomly generate r, and check whether (M||r, M'||r) collide. If collision does not happen, repeat steps 1 and 2.

General Key-Recovery Attacks on NMAC

• Proposed by Preneel and van Oorschot in 1999:

Crucial idea: generate a collision in the inner hash function by the birthday attack.

To recover k₂:

1. guess the value of k_2 .

2. check whether the guessed k_2 can satisfy that (M, M') cause the inner collision.

General Key-Recovery Attacks on NMAC

• Proposed by Preneel and van Oorschot in 1999:

Crucial idea: generate a collision in the inner hash function by the birthday attack.

To recover k_1 after k_2 has been recovered:

1. guess the value of k_1 .

2. check whether the guessed k_1 can satisfy that NMAC(M) using guessed k_1 is the same with orginal value.

Security Boundary of NMAC

Suppose bit-length of hash value and secret keys is n:

Whatever H is,

One collis a high prof If underlying hash function is weak, more powerful key-recovery attack is possible.

Both secret keys of NMAC can be recovered with $2^{n/2}$ online queries and 2^{n+1} offline computations.

Key-Recovery Attacks on NMAC

Wang et al. revealed weakness of several hash functions from MD4 family, which leaded to key-recovery attacks on NMAC based on specific weak hash functions:

- At Asiacrypt 2006, Contini and Yin proposed inner-key recovery attacks on NMAC instantiated with MD4, MD5, SHA-1.
- At Crypto 2007, Fouque, Leurent and Nguyen proposed full-key recovery attacks on NMAC-MD4 and NMAC-MD5.
- At Financial Crypt 2007, Rechberger and Rijmen proposed full-key recovery attacks on NMAC-MD5 and NMAC-SHA-1.

Key-Recovery Attacks on NMAC

Wang et al. revealed weakness of several hash functions from MD4 family, which leaded to key-recovery attacks on NMAC based on specific weak hash functions:

- At Asiacrypt 2006, Contini and Yin proposed inner-key recovery attacks on NMAC instantiated with MD4, MD5, SHA-1.
- At Crypto 2007, Fouque, Leurent and Nguyen proposed full-key recovery attacks on NMAC-MD4 and NMAC-MD5.
- At Financial Cr pt 2007, Rechberger and Rijmen proposed full-key recov attacks on NMAC-MD5 and NMAC-SHA-1.

Related to our research.

Framework of Key-Recovery Attacks

1. Online work.

The remaining part of secret key will be recovered by the exhaustive search.

Previous Outer-Key Recovery Attack

Previous outer-key recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5:

Previous Outer-Key Recovery Attack

Previous outer-key recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5:

1: the value is known based on the knowledge of k_2 .

2: detect whether collision happens.

MD5: recover internal states in outer MD5, and then inverse calculate k_1 .

modifying the value at point **1** to set conditions on internal states.

If collision happens with expexted number of queries, internal states satisfy conditions.

Analysis of previous work

Advantages of Our Attack (MD4)

HMAC/NMAC-MD4:

Previous work:

Point **1** : generate pre-determined pair difference.

Differential attack: real collision.

Our work:

Point **1** : the same with previous work.

Differential attack: near collision attack, which reduces the complexity, since generating one near-collision needs less pair queries. Moreover it can recover more bit- values.

Advantages of Our Attack (MD4)

	[FLN 07]	Our Work
Online complexity	288	272
#bits by online	22	51
Offline comlexity	2 ⁹⁵	277
Total complexity	295	277

HMAC/NMAC-MD4: both online and offline complexities have been improved.

Advantages of Our Attack (MD5)

Differential attack: real collision (FLN work), near-collision (RR work).

Our work:

Point \bigcirc : not necessary (online work). k_1 can be recovered partially without the knowledge of k_2 at all.

Differential attack: near-collision.

Advantages of Our Attack (MD5)

Differential attack: near collision attack.

Usage of Near-collision attacks

In Financial Cryptography 2007, Rechberger and Rijmen utilized near-collisions on MD5 to recover the outer key of NMAC-MD5, which might be **the first usage** of near-collision to attack HMAC and NMAC.

Advantages of Our Attack (MD5)

	[FLN 07] [RR 07]	Our Work
Online complexity	2 ⁵¹	275
#bits by online	28	53
Offline comlexity	2 ¹⁰⁰	275
Total complexity	2 ¹⁰⁰	2 ⁷⁶

NMAC-MD5: more bit-values can be recovered by online work. The outer key can be partially recovered without the knowledge of the inner key.

One Novelty of Our Attack

A new approach of key-recovery technique: utilizing feed-forward operation.

The inner hash value after padding is only one block:

One Novelty of Our Attack

A new approach of key-recovery technique: utilizing feed-forward operation.

The inner hash value after padding is only one block:

CFs of MD4 and MD5

We will obtain output of E, then recover k_1 .

Our outer key-recovery attacks on HMAC/NMAC-MD4

We will omit description of NMAC-MD5 case because of limited time.

Procedure of Our Attack

1. Obtain output of E in the outer MD4.

Obtain Output of E for MD4 Case

1. Determine message difference and differential path for nearcollision attack:

Model of near-collision attack:

• Local collisions.

• The other differences only exist in last several steps.

Our Near-Collision on MD4

• Message differences:

$$\Delta m_3 = 2^i$$

• Differential path:

The local Collision from step 1 until step 29;

The other differences only exist in the last 4 steps in third round.

3R of MD4

Local collision

Obtain Output of E for MD4 Case

1. Determine message difference and differential path for nearcollision attack

2. Obtain output of E by detecting near-colliding shape.

One Weakness of Feed-Forward Operation

 (k_a, k_b, k_c, k_d) : 128-bit k_1 divided into four 32-bit values.

 $(a_{48}, b_{48}, c_{48}, d_{48})$: output of E in the outer MD4 divied into four 32-bit values.

 (h_a, h_b, h_c, h_d) : final output of NMAC divided into four 32-bit values.

(h_a, h_b, Consequently, we can obtain output of E by detecting difference propagation in last 4 steps. $\Delta h_a = \Delta a_{48} \quad \Delta h_b = \Delta b_{48} \quad \Delta h_c = \Delta c_{48} \quad \Delta h_d = \Delta d_{48}$

One Toy Example

One Toy Example

 Δb_{47} should be caused by Δb_{46} and Δc_{46} :

f function works bit-independently

near-collision shape:

$$\Delta h_{a} = 2^{i+3};$$

$$\Delta h_{c} = 2^{i+14} + 2^{i+15} + 2^{i+23};$$

$$\Delta h_{d} = 2^{i+12};$$

 $a_{48,i+3} = c_{46,i+3} = 1;$

By similar way, we will obtain many messages such that bit-values of output of E has been recovered.

Procedure of Our Attack

1. Obtain output of E of the outer MD4.

2. Recover the outer key using output of E of the outer MD4.

The Toy Example

We obtained one message such that $a_{48, i+3} = 1$, and its corresponding MAC value:

 $h_{a,(i+2)\sim 0} \ge k_{a,(i+2)\sim 0}: \text{ no carry during } k_{a,(i+2)\sim 0} + a_{48,(i+2)\sim 0}$ $h_{a,(i+2)\sim 0} < k_{a,(i+2)\sim 0}: \text{ a carry during } k_{a,(i+2)\sim 0} + a_{48,(i+2)\sim 0}$

The Toy Example

We obtained one message such that $a_{48, i+3} = 1$, and its corresponding MAC value:

1. Guess the values $k_{a-(i+2)=0}$. By similar way, we can recover the outer key partially using the obtained messages. $h_{a,(i+2)\sim0} \ge k_{a,(i+2)\sim0}$. no carry during $k_{a,(i+2)\sim0} + a_{48,(i+2)\sim0}$

 $h_{a,(i+2)\sim 0} < k_{a,(i+2)\sim 0}$: a carry during $k_{a,(i+2)\sim 0} + a_{48,(i+2)\sim 0}$

3. Calculate the bit-value of $k_{a, i+3}$.

Experiment

It is impossible to apply the real experiment because of complexity.

Instead, we did two separate experiments:

• Confirm the correctness of differential path of the local collision in first and second rounds.

• Confirm the correctness of key-recovery technique: randomly generate chaining variables in step 44.

Conclusion

We proposed new outer-key recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5:

There might be two interesting points:

• New approach of key-recovery attack: using feed-forward operation of MD4 and MD5.

• One near-collision model: local collisions + the other difference propagation in last several steps.

Complexity Comparison

Comparison		Fouque et al.'s work	Our results
HMAC/NMAC-MD4	Online complexity	2 ⁸⁸	2^{72}
Standard Attack	Recovered bit-values (online)	22	51
	Offline complexity	2^{95}	2^{77}
	Total complexity	2^{95}	2^{77}
NMAC-MD5	Online compexity	2 ⁵¹	2^{75}
Related-Key Attack	Recovered bit-values (online)	28	53
	Offline complexity	2^{100}	2^{75}
	Total complexity	2^{100}	2^{76}

Thank you & Question