Truly Efficient 2-Round Perfectly Secure Message Transmission Scheme

Kaoru Kurosawa

Kazuhiro Suzuki

(Ibaraki University, Japan)

Usual Model of Encryption

- Single line between Alice and Bob.
- Alice and Bob share a key.
- Enemy can fully corrupt the channel.
 (Observe and modify the ciphertext)

Dolev, Dwork, Waarts and Yung

- n-channels between Alice and Bob.
- An infinitely powerful adversary A can corrupt t out of n channels.
 (Observe and modify)

Goal

- Alice wishes to send a secret s to Bob
- in r-rounds
- without sharing any key.

1 Round Protocol

2 Round Protocol

We say that a MT scheme

is perfectly secure if

- (Perfect Privacy)
 - Adversary learns no information on s
- (Perfect Reliability)
 - Bob can receive s correctly

In what follows, PSMT means

- Perfectly
- Secure
- Message
- Transmission
- Scheme

For 1 round,

 Dolev et al. showed that there exists a 1-round PSMT iff n ≥ 3t+1.

 They also showed an efficient 1-round PSMT.

where the adversary can corrupt tout of n channels.

For 2 rounds,

 It is known that there exists a 2-round PSMT iff n ≥ 2t+1.

 However, it is very difficult to construct an efficient scheme for n=2t+1.

For n=2t+1,

- Dolev et al. showed a 3-round PSMT such that the transmission rate is O(n⁵),
- where the transmission rate is defined as

the total number of bits transmitted the size of the secrets

Sayeed et al. showed

 a 2-round PSMT such that the transmission rate is O(n³)

Srinathan et al. showed that

 n is a lower bound on the transmission rate of 2-round PSMT with n=2t+1.

At CRYPTO 2006,

 Agarwal, Cramer and de Haan showed a 2-round PSMT such that the transmission rate is O(n).

 However, the computational cost is exponential.

Agarwal, Cramer and de Haan

- left it as an open problem to construct a 2-round PSMT for n=2t+1 such that
- not only the transmission rate is O(n)
- but also the computational cost is poly(n).

In This Paper,

• We solve this open problem.

2-round PSMT for n=2t+1

	Trans. rate	Sender's comp.	Receiver's comp.
Agarwal et al.'s schme	O(n)	exponential	exponential
Proposed scheme	O(n)	poly(n)	poly(n)

Consider a MT as follows. Alice chooses a random f(x) such that deg $f(x) \le t$ and

Perfect Privacy:

Enemy learns no info. on s

Enemy corrupts t channels.

- such that a codeword is
 X=(f(1),..., f(n)),

such that a codeword is

$$X = (f(1), ..., f(n)),$$

• where with deg $f(x) \leq t$.

such that a codeword is

$$X = (f(1), ..., f(n)),$$

- where with deg $f(x) \leq t$.
- Then X has at most t zeros.
- Hence

the minimum Hamming weight of C is n-t.

such that a codeword is

$$X = (f(1), ..., f(n)),$$

- where with deg $f(x) \leq t$.
- Then X has at most t zeros.
- Hence

the minimum Hamming distance of C is d=n-t.

If
$$n=3t+1$$
,

• the minimum Hamming distance of C is d = n - t = (3t+1) - t = 2t+1.

If
$$n=3t+1$$
,

- the minimum Hamming distance of C is
 d=n t = (3t+1) t = 2t+1.
- Hence the receiver can correct t errors caused by the adversary.

If
$$n=3t+1$$
,

- the minimum Hamming distance of C is
 d=n t = (3t+1) t = 2t+1.
- Hence the receiver can correct t errors caused by the adversary.
- Thus perfect reliability is also satisfied.

If n=3t+1,

- the minimum Hamming distance of C is
 d=n t = (3t+1) t = 2t+1.
- Hence the receiver can correct t errors caused by the adversary.
- Thus perfect reliability is satisfied.
- Therefore
 we can obtain a 1-round PSMT easily.

If n=2t+1, however,

the minimum Hamming distance of C is
 d = n - t = (2t+1) - t = t+1

If n=2t+1, however,

- the minimum Hamming distance of C is d=n-t=(2t+1)-t= t+1
- Hence the receiver can only detect t errors, but cannot correct them.

If n=2t+1, however,

- the minimum Hamming distance of C is d=n-t=(2t+1)-t=t+1
- Hence the receiver can only detect t errors, but cannot correct them.
- This is the main reason why the construction of PSMT for n=2t+1 is difficult.

What is a difference

between error correction and PSMT?

What is a difference

- between error correction and PSMTs?
- If the sender sends a single codeword, then the Enemy causes t errors randomly.

What is a difference

- between error correction and PSMTs?
- If the sender sends a single codeword, then the Enemy causes t errors randomly.
- Hence there is no difference.

Our Observation

If the sender sends many codewords

$$X_1, ..., X_m,$$

then the errors are not totally random

because

the errors always occur at the same t (or less) places!

Our Observation

Suppose that the receiver received

$$Y_1 = X_1 + E_1, ..., Y_m = X_m + E_m,$$

Let

$$E = [E_1, ..., E_m].$$

Then

$$\dim E \leq t$$

because the errors always occur at the same t (or less) places!

Suppose that the receiver received $Y_i=X_i+E_i$

$Y = \{Y_1,, Y_m\}$	$E = [E_1,, E_m].$
Pseudo dim k	dim k
Pseudo basis {Y _{j1} ,, Y _{jk} }	Basis {E _{j1} ,, E _{jk} }

Main Contribution

We introduce a notion of

```
pseudo-dimension pseudo-basis,
```

and

show a poly-time algorithm
 which finds them from Y={Y₁, ..., Y_m}.

Main Contribution

We introduce a notion of

```
pseudo-dimension pseudo-basis, and
```

- show a poly-time algorithm
 which finds them from Y={Y₁, ..., Y_m}.
- Please see the proceedings for this algorithm.

For example,

- $E_1 = (1, 0, ..., 0),$
- $E_2=(1,1,0,\ldots,0),$
- •
- $E_t = (1, ..., 1, 0, ..., 0),$

is a basis of E.

```
E<sub>1</sub>=(1,0,...,0), NonZero(E<sub>1</sub>)={1}
E<sub>2</sub>=(1,1,0,...,0), NonZero(E<sub>2</sub>)={1,2}
...
E<sub>t</sub>=(1,...,1,0,...,0), NonZero(E<sub>t</sub>)={1,...,t}
```

```
E<sub>1</sub>=(1,0,...,0), NonZero(E<sub>1</sub>)={1}
E<sub>2</sub>=(1,1,0,...,0), NonZero(E<sub>2</sub>)={1,2}
...
E<sub>t</sub>=(1,...,1,0,...,0), NonZero(E<sub>t</sub>)={1,...,t}
```

Define

= {all forged channels}

```
    E<sub>1</sub>=(1,0, ..., 0), NonZero(E<sub>1</sub>)={1}
    E<sub>2</sub>=(1,1,0, ..., 0), NonZero(E<sub>2</sub>)={1,2}
    ...
    E<sub>t</sub>=(1,...,1,0, ..., 0), NonZero(E<sub>t</sub>)= {1, ..., t}
    Define
        FORGED = U NonZero(E<sub>i</sub>)
```

basis

In general,

FORGED = U NonZero(E_i)

basis

FORGED = {all forged channels}

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

For
$$i=1, ..., t+1,$$

Random codeword
$$X_i = (f_i(1), ..., f_i(n))$$

$$Y_i = X_i + E_i$$

Pseudo-dimension k Pseudo-basis B of $\{Y_1, ..., Y_{t+1}\}$

R Broadcasts (k, B)

S can receive them correctly by taking the majority vote

because n = 2t + 1

S computes
$$\{E_i=Y_i-X_i \mid Y_i \in B\}$$

S computes

$$\{E_i = Y_i - X_i \mid Y_i \in B\}$$
= basis of $[E_1, ..., E_{t+1}]$

from the definition of pesudo-basis

```
Pseudo-dimension k=t
Pseudo-basis B={Y<sub>1</sub>, ..., Y<sub>t</sub>}
```

S computes $\{E_i=Y_i-X_i \mid Y_i \in B\}$

= basis of $[E_1, ..., E_{t+1}]$

 $FORGED = U NonZero(these E_i)$

```
Pseudo-dimension k=t
Pseudo-basis B={Y<sub>1</sub>, ..., Y<sub>t</sub>}
```

S computes $\{E_i=Y_i-X_i \mid Y_i \in B\}$ = basis of $[E_1, ..., E_{t+1}]$ FORGED = \cup NonZero(these E_i) = { all forged channels }

In the 3rd round

R decrypts cas follows.

R received FORGED

Suppose that FORGED={1, ..., t}

R ignores

R received these t+1 values correctly

$$X_{t+1} = (f_{t+1}(1), ..., f_{t+1}(t), f_{t+1}(t+1), ..., f_{t+1}(n))$$

Perfect Reliability

$$X_{t+1} = (f_{t+1}(1), ..., f_{t+1}(t), f_{t+1}(t+1), ..., f_{t+1}(n))$$

R can reconstruct $f_{t+1}(x)$ from these t+1 by using Lagrange formula.

Therefore R can decrypt $c = s + f_{t+1}(0)$

Perfect Privacy

Sedner FORGED
$$c = s + f_{t+1}(0)$$

$$X_{t+1} = (f_{t+1}(1), ..., f_{t+1}(t), f_{t+1}(t+1), ..., f_{t+1}(n))$$

Enemy knows at most t values.

Hence

it has no info. on $f_{t+1}(0)$.

Therefore it has no info. on s.

Rest of This Talk

- Our 3-round PSMT
- Basic 2-round PSMT
- More Efficient 2-round PSMT
- Final 2-round PSMT

For i=1, ..., n

$$X_i = (f_i(1), ..., f_i(n))$$
 Receiver

the coefficients of
$$f_i(x)$$
 $X_i = (f_i(1), ..., f_i(n))$

Channel i

For i=1, ..., n

Sender
$$Y_i = X_i + E_i$$

$$f_i'(x)$$

$$Channel i X_i' = (f_i'(1), ..., f_i'(n))$$

For i=1, ..., n

$$Y_i = X_i + E_i$$

Note that $d(Y_i, X_i) \leq t$

$$\frac{f_{i}'(x)}{\text{channel } i}$$
 $\frac{f_{i}'(x)}{X_{i}' = (f_{i}'(1), ..., f_{i}'(n))}$

If d(Y_i, X_i') > t, then S broadcasts "ignore channel i"

Sender
$$Y_i = X_i + E_i$$

Sender
$$f_i'(x)$$

channel i $X_i' = (f_i'(1), ..., f_i'(n))$

If d(Y_i, X_i') > t, then S broadcasts "ignore channel i"

Otherwise S broadcasts $\Delta_i = X_i' - Y_i$

In the 2nd round

In the 2nd round

R first computes FORGED.

R next reconstrcuts each $f_i(x)$ as follows.

For each j ∉FORGED,

R computes

$$f_i'(j) = \Delta_i |_{j} + f_i(j)$$

$$= (X_i' - Y_i) |_{j} + f_i(j)$$

This holds because

$$f_i'(j)=X_i'|_j$$
 and $Y_i|_j=f_i(j)$

For each j ∉FORGED,

R computes

$$f_i'(j) = \Delta_i |_{j} + f_i(j)$$

$$= (X_i' - Y_i) |_{j} + f_i(j)$$

This holds because

$$f_i'(j)=X_i'|_j$$
 and $y_{ij}=f_i(j)$

R can reconstrcut f_i'(x) from these f_i'(j)
 by using Lagrange formula.

Perfect Reliability

Thus \mathbb{R} can reconstruct each $f_i'(x)$.

Hence R can decrypt

$$c= s + f_1'(1)+...+f_n'(n)$$

Perfect Privacy

- S broadcasts a pseudo-basis {Y₁, ..., Y_t}
- Enemy corrupts t channels.
- Note that

$$n - t - t = (2t+1) - t - t = 1$$

 This implies that there remains at least one f_i'(i) on which the enemy has no information

Perfect Privacy

Hence in the ciphertext

$$c = s + f_1'(1) + ... + f_n'(n),$$

- the enemy has no information on s.
- Hence perfect privacy is also satisfied.

Efficiency

	Trans.	Sender's	Receiver's
	rate	Comp.	Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Efficiency

	Trans.	Sender's	Receiver's
	rate	Comp.	Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

More Efficient 2-round PSMT

In our basic scheme,
 S sends a single secret s.

More Efficient 2-round PSMT

- In our basic scheme,
 S sends a single secret s.
- In the more efficient scheme,
 S sends t² secrets s_i by running
 the basic scheme t times in parallel.

More Efficient 2-round PSMT

- In our basic scheme,
 S sends a single secret s.
- In the more efficient scheme,
 S sends t² secrets s_i by running
 the basic scheme t times in parallel.

This implies that the transmission rate is reduced from $O(n^2t)$ to $O(n^2)$.

Run the basic scheme t times

- For each channel i,
 R chooses t polynomials f_{i+jn}(x),
 where j=0, ...,t-1.
- In total,
 R chooses tn polynomials f_{i+in}(x).

Among tn polynomials $f_{i+in}(x)$,

Since the enemy corrupts t channels,
 she knows t² values of f_{i+in}(i).

Among tn polynomials $f_{i+in}(x)$,

- Since the enemy corrupts t channels,
 she knows t² values of f_{i+in}(i).
- S broadcasts a pseudo-basis {Y₁, ..., Y_t}

Among tn polynomials $f_{i+jn}(x)$,

- Since the enemy corrupts t channels,
 she knows t² values of f_{i+in}(i).
- S broadcasts a pseudo-basis {Y₁, ..., Y_t}
- There remains t² uncorrupted f_{i+jn} '(i)s because

$$tn - t^2 - t = t(2t+1) - t^2 - t = t^2$$

Enemy has no info. on these t² values

Randomness Extractor

- is used to extracst these t² values
- S uses them as one-time pad to encrypt t² secrets

Randomness Extractor

- Suppose that Enemy has no info. on t² out of th elements r₀, ...,r_{tn-1}.
- Let

$$R(x)=r_0+r_1x+...+r_{tn-1}x^{tn-1}$$

• Then Enemy has no info. on

$$R(1), ..., R(t^2)$$

Consequently,

In the more efficient scheme,
 S can send t² secrets s_i by running
 the basic scheme t times in parallel.

This implies that the transmission rate is reduced from $O(n^2t)$ to $O(n^2)$.

Efficiency

	Trans.	Sender's	Receiver's
	rate	Comp.	Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Efficiency

	Trans.	Sender's	Receiver's
	rate	Comp.	Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Most Costly Part

- S broadcasts $\Delta_1, ... \Delta_{tn}$, where $|\Delta_i| \leq t$.
- The communication cost to broadcast each Δ_i is tn.
- We will show how to reduce it to O(n).

Modify the 2nd round as follows.

- S first computes the pseudo-dimension k.
- If $|\Delta_i| > k$,
 - S broadcasts "ignore channel i".

Otherwise S sends Δ_i as follows

- |Δ_i|≦k
- S knows the pseudo-dimension k.
- R knows FORGED={k forged channels}

Generalized Broadcast

- Suppose that S wants to send k+1 elements a₀, ..., a_k.
- S constructs A(x) such that $A(x) = a_0 + a_1x + ... + a_kx^k$
- S sends A(i) throught channel i for i=1, ...,n.
- This communication cost is n.

R receives as follows.

- Suppose that FORGED={1, ..., k}.
- R ignores FORGED and considers a shortened codeword

$$[A(k+1), ..., A(n)]$$

It turns out that

$$d = 2 (t - k) + 1$$

R receives as follows.

- Hence R can correct t-k errors.
- On the other nhand,
 since there are k forged channels,
 Enemy can forge more t-k channels.
- Therefore
 R can receive a₀, ..., a_k correctly.

Transmission Rate

- By using this technique,
 the cost of sending each Δ_i is reduced from tn to n.
- This implies that the transmission rate is reduced from O(n²) to O(n).

Efficiency

	Trans.	Sender's	Receiver's
	rate	Comp.	Comp.
Basic scheme	O(n ² t)	poly(n)	poly(n)
More efficient scheme	O(n ²)	poly(n)	poly(n)
Final scheme	O(n)	poly(n)	poly(n)

Summary

 We solved the open problem raised by Agarwal, Cramer and de Haan at CRYPTO 2006.

2-round PSMT for n=2t+1

	Trans. rate	Sender's comp.	Receiver's comp.
Agarwal et al.'s schme	O(n)	exponential	exponential
Proposed scheme	O(n)	poly(n)	poly(n)

Thank you!