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Usual Model of Encryption

* Single line between Alice and Bob.

+ Alice and Bob share a key.

* Enemy can fully corrupt the channel.
(Observe and modify the ciphertext)




Dolev, Dwork, Waarts and Yung
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» n-channels between Alice and Bob.

* An infinitely powerful adversary A
can corrupt t out of n channels.
(Observe and modify)



Goal

* Alice wishes to send a secret s to Bob
* IN r-rounds
* without sharing any key.



1 Round Protocol




2 Round Protocol
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We say that a MT scheme

IS perfectly secure If
* (Perfect Privacy)

Adversary learns no information on s
* (Perfect Reliability)

Bob can recelive s correctly



In what follows, PSMT means

Perfectly
Secure
Message
Transmission
Scheme



For 1 round,

 Dolev et al. showed that there exists
a 1-round PSMT iff n = 3t+1.

* They also showed
an efficient 1-round PSMT.

where the adversary can corrupt
{ out of n channels.



For 2 rounds,

* ltIs known that there exists
a 2-round PSMT iff n = 2t+1.

 However, It Is very difficult to construct
an efficient scheme for n=2t+1.




For n=2t+1,

Dolev et al. showed a 3-round PSMT

such that
the transmission rate is O(n>),
where the transmission rate I1s defined as

the total number of bits transmitted
the size of the secrets




Sayeed et al. showed

* a 2-round PSMT such that
the transmission rate is O(n?)



Srinathan et al. showed that

* NIsS alower bound on
the transmission rate of 2-round PSMT
with n=2t+1.



At CRYPTO 20060,

« Agarwal, Cramer and de Haan
showed a 2-round PSMT such that
the transmission rate is O(n) .

 However,
the computational cost is exponential.



Agarwal, Cramer and de Haan

 |eft it as an open problem to
construct a 2-round PSMT for n=2t+1
such that
* not only
the transmission rate is O(n)
 but also
the computational cost is poly(n).



In This Paper,

* We solve this open problem.



2-round PSMT for n=2t+1

Trans. rate |Sender’s Receiver’s
comp. comp.
Agarwal et |O(n) exponential | exponential
al.'s schme
Proposed |O(n) poly(n) poly(n)

scheme




Consider a MT as follows.
Alice chooses a random f(x) such that

deg f(x)=t and
fV \

o /




corrupts t channels.

Enemy learns no info. on s %

f(1)

because deg f(x)=t :
f(n)




Let C be a linear code

* such that a codeword Is
X=(f(1),..., f(n)),
* where f(x) Is a polynomial
with deg f(x) = t.



Let C be a linear code

 such that a codeword Is

X=(f(1),..., f(n)),
« where with deg f(x) = t.

* Then X has at mostt zeros
because deg f(x) = t.



Let C be a linear code

such that a codeword Is
X=(f(1),..., f(n)),
where with deg f(x) = t.
Then X has at most t zeros.
Hence
the minimum Hamming weight of C is
n-t.



Let C be a linear code

such that a codeword Is
X=(f(1),..., f(n)),

where with deg f(x) = t.

Then X has at most t zeros.

Hence

the minimum Hamming distance of C is
d=n-t.



If N=3t+1,

* the minimum Hamming distance of C Is
d=n-t=(3t+1) -t = 2t+1.



If N=3t+1,

* the minimum Hamming distance of C Is
d=n -t = (3t+1) — t = 2t+1.

e Hence the recelver can correctt errors
caused by the adversary.



If N=3t+1,

* the minimum Hamming distance of C Is
d=n-t=(3t+1) — t = 2t+1.

* Hence the receiver can correct t errors
caused by the adversary.

* Thus perfect reliablility is also satisfied.



If N=3t+1,

the minimum Hamming distance of C Is
d=n-t=(3t+1) — t = 2t+1.

Hence the receiver can correct t errors
caused by the adversary.

Thus perfect reliabllity Is satisfied.
Therefore
we can obtain a 1-round PSMT easily.




If Nn=2t+1, however,

* the minimum Hamming distance of C Is
d=n-t=(2t+1) -t =t+1



If Nn=2t+1, however,

* the minimum Hamming distance of C Is
d=n-t=(2t+1)-t= t+1
* Hence the receiver can only detect t errors,
but cannot correct them.



If Nn=2t+1, however,

* the minimum Hamming distance of C Is
d=n-t=(2t+1)-t=t+1
* Hence the receiver can only detect t errors,
but cannot correct them.

* This is the main reason why the
construction of PSMT for n=2t+1 Is difficult.



What is a difference

 between error correction and PSMT ?



What is a difference

* between error correction and PSMTs ?
* If the sender sends a single codeword,
then the Enemy causes t errors randomly.



What is a difference

* between error correction and PSMTs ?

* If the sender sends a single codeword,
then the Enemy causes t errors randomly.

* Hence there Is no difference.




Our Observation

* If the sender sends many codewords
) ST &
then the errors are not totally random
* because
the errors always occur
at the same t (or less) places !



Our Observation

« Suppose that the receliver received
Y =X+E, ..., Y =X +E_,
¢ Let
E=[E, ..., E.]
* Then
dmE =t
because the errors always occur
at the same t (or less) places !



Suppose that the receiver received
Y =X+ E,

Y={Y,, ..., Y.} E=[E, ..., E.l

Pseudo dim k <':> dim k

Pseudo basis <:’> Basis {E;;, ..., E}
Vi, . Yyd




Main Contribution

* We introduce a notion of
pseudo-dimension
{pseudo-basis,
and
* show a poly-time algorithm
which finds them from Y={Y, ..., Y }.



Main Contribution

* We Introduce a notion of
pseudo-dimension
{pseudo-basis, and
* show a poly-time algorithm
which finds them from Y={Y, ..., Y }.
* Please see the proceedings
for this algorithm.



More Observation

For example,

* E,=(1,0, ..., 0),

* E,=(1,1,0, ..., 0),

- E~=(1,...,1,0, ..., 0),
IS a basis of



More Observation

* E,=(1,0, ..., 0), NonZero(E,)={1}
* E,=(1,1,0, ..., 0), NonZero(E,)={1,2}

- E=(1,...,1,0, ..., 0), NonZero(E))={1, ..., t}



More Observation

E,=(1,0, ..., 0), NonZero(E,)={1}
E.=(1,1,0, ..., 0), NonZero(E,)={1,2}

E=(1,...,1,0, ..., 0), NonZero(E,)={1, ..., t}
Define

FORGED = U NonZero(E))
basis



More Observation

 E,=(1,0, ..., 0), NonZero(E,)={1}
 E,=(1,1,0,...,0), NonZero(E,)={1,2}

- E~=(4,...,1,0, ..., 0), NonZero(E))= {1, ..., t}

 Deflne

FORGED = U NonZero(E)
basis
= {all forged channels}



In general,

« FORGED = U NonZero(E))

basis

FORGED = {all forged channels}



Rest of This Talk

Our 3-round PSMT

Basic 2-round PSMT

More Efficient 2-round PSMT
Final 2-round PSMT



Rest of This Talk

Our 3-round PSMT

Basic 2-round PSMT

More Efficient 2-round PSMT
Final 2-round PSMT



Fori=1, ..., t+1,
Random codeword
X = (f(1), ..., fi(n))
Y= X+ )

Pseudo-dimension k /I\,: |
Pseudo-basis B

of {Y,, ..., Y.}




R Broadcasts (k, B)

|
%
(k, B)

(k, B)



S can recelve them correctly
by taking the majority vote

(K, By)

channel 1

~ t (forged)

(kQﬂ E3t) J

By
Cham ~ t+1 (correct)
(k, B) )

becausen=2t+ 1




For simplicity,

- Pseudo-dimension k=t
Pseudo-basis B={Y,, ..., Y/}

S computes
{E=Yi-X | Y, €B}



For simplicity,

- Pseudo-dimension k=t
Pseudo-basis B={Y,, ..., Y/}

S computes
{E=Yi-X | Y, €B}
= basis of [E,, ..., E;{]

from the definition of pesudo-basis



For simplicity,

- Pseudo-dimension k=t
Pseudo-basis B={Y,, ..., Y/}

S computes
{E=Yi-X | Y, €B}
= basis of [E,, ..., E.4]
FORGED = uU NonZero( these E; )



For simplicity,

- Pseudo-dimension k=t
Pseudo-basis B={Y,, ..., Y}

S computes
{E=Yi-X | Y, €B}
= basis of [E,, ..., E.4]
FORGED = uU NonZero( these E; )
= { all forged channels }



In the 3" round

FORGED |
@ ‘ c =s+f.,,(0) ‘

where Y,,, €B

R decrypts c as follows.



R received FORGED

Suppose that FORGED={1, ..., t}

| R received these t+1
R ignores values correctly

A A
I -

Xeo1=(Fr (1), ooy Foug (D), Foq(t+1), oo, Fon(N))




Perfect Reliability

Xes=(fr1(1), ..., ft+1(t),\ft+1(t+1), ft+1(/n))

v

R can reconstruct ., ,(x) from these t+1
by using Lagrange formula.

Therefore R can decrypt
C=S+ ft+1(0)



Perfect Privacy
FORGED
@ = o410

X1 =(Fr (1), ooy ooy (8, Foa(t+1), oo, Fon(N))

v

Enemy knows at most t values.
Hence

It has no info. on f,_,(0).
Therefore it has no info. on s.



Rest of This Talk

Our 3-round PSMT

Basic 2-round PSMT

More Efficient 2-round PSMT
Final 2-round PSMT



Fori=1, ..., n

X=(f(1), ..., fi(n)) <=

the coefficients of f(x)
X=(F(1), ..., f.(n)) .

channel |




Fori=1, ..., n

3 Y=X+E
| channel | Xi,fi(()‘fi,)“)a .., ()




Fori=1, ..., n

Note that d( Y;, X)) =t
< f(x)
channeli K =(f(1), ..., fi(n))

Ifd( Y, X)>1t,
then S broadcasts “ignore channel I”




@ G Y. = X +E.
< ;' (x)
channeli X =(f(1), ..., f(n))

Ifd( Y, X')>t,
then S broadcasts “ignore channel 1"

Otherwise
S broadcasts A=X; - Y,



In the 2"9 round

=

Each A
Pseudo-dimension k
Pseudo-basis B
c=s+f,(1)+...+f '(n)



In the 2"9 round

Each A,
- {Pseudo-dimension k
Pseudo-basis B

c=s +f,'(1)+...+f(n)

R first computes FORGED.
R next reconstrcuts each f'(x) as follows.



For each | EFORGED,

R computes
()= 4]+ §0)
= (X =Y;) [+ 10)

 This holds because

i'()=Xl;and Y;|=f,()



For each | EFORGED,

R computes
()= 4]+ §0)
= (X7 =Y) |+ 10)
* This holds because
i'()=X/]; and y;=1(])
* R can reconstrcut f'(x) from these f(j)
by using Lagrange formula.



Perfect Reliability

Thus R can reconstrcut each f(x).

Hence R can decrypt
c=s+f (1)+...+f'(n)



Perfect Privacy

S broadcasts a pseudo-basis {Y,, ..., Y}
Enemy corrupts t channels.
Note that
n—t-t=Qt+1)—-t-t=1
This implies that
there remains at least one f(i)
on which the enemy has no information



Perfect Privacy

* Hence In the ciphertext
c=s+f(1)+...+f'(n),
» the enemy has no information on s.
* Hence
perfect privacy Is also satisfied.




Efficiency

Trans. |Sender’'s | Receiver’s
rate Comp. Comp.
Basic scheme | O(n4) poly(n) poly(n)
More efficient | O(n?) poly(n) poly(n)
scheme
Final scheme | O(n) poly(n) poly(n)




Efficiency

Trans. |Sender’'s | Receiver’s
rate Comp. Comp.
Basic scheme |O(n4) poly(n) poly(n)
More efficient | O(n?) poly(n) poly(n)
scheme
Final scheme | O(n) poly(n) poly(n)




More Efficient 2-round PSMT

* In our basic scheme,
S sends a single secret s.



More Efficient 2-round PSMT

* In our basic scheme,
S sends a single secret s.
* In the more efficient scheme,
S sends t secrets s by running
the basic scheme t times In parallel.



More Efficient 2-round PSMT

* In our basic scheme,
S sends a single secret s.
* In the more efficient scheme,
S sends t secrets s by running
the basic scheme t times In parallel.

This implies that the transmission rate Is
reduced from O(n?t) to O(n?).



Run the basic scheme t times

* For each channel |,
R chooses t polynomials f;,.,(x),
where |=0, ... t-1.

* In total,
R chooses tn polynomials f;,,(X).



Among tn polynomials f;,;,(X),

* Since the enemy corrupts t channels,
she knows t* values of f,,,(i).



Among tn polynomials f;,;,(X),

* Since the enemy corrupts t channels,
she knows t* values of f,,,(i).
» S broadcasts a pseudo-basis {Y,, ..., Y}



Among tn polynomials f;,;,(X),

* Since the enemy corrupts t channels,
she knows t* values of f,,,(i).
» S broadcasts a pseudo-basis {Y,, ..., Y}
» There remains t* uncorrupted f;,;'(i)s
because
-f2-t= -fP—t =12
Enemy has no info. on these t* values



Randomness Extractor

* iSs used to extracst these t* values
* S uses them as one-time pad
to encrypt t secrets




Randomness Extractor

* Suppose that Enemy has no info. on
t2 out of tn elements ry, ..., 1.
* Let
R(X)=rg+rx+... + r,, ; xt"1
 Then Enemy has no info. on
R(1), ..., R(t?)



Consequently,

* In the more efficient scheme,
S can send t? secrets s; by running
the basic scheme t times In parallel.

This implies that the transmission rate Is
reduced from O(n?t) to O(n?).



Efficiency

Trans. |Sender’'s | Receiver’s
rate Comp. Comp.
Basic scheme |O(n4) poly(n) poly(n)
More efficient | O(n?) poly(n) poly(n)
scheme
Final scheme | O(n) poly(n) poly(n)




Efficiency

Trans. |Sender’'s | Receiver’s
rate Comp. Comp.
Basic scheme |O(n4) poly(n) poly(n)
More efficient | O(n?) poly(n) poly(n)
scheme
Final scheme | O(n) poly(n) poly(n)




Most Costly Part

S broadcasts A, ...A,,, where |A|=t.
The communication cost

to broadcast each A, is tn.

We will show how to reduce it to O(n).



Modify the 2" round as follows.

» S first computes the pseudo-dimension K.
o If | A|>K,
S broadcasts “ignore channel I”.



Otherwise S sends A as follows

.+ |A=k
* S knows the pseudo-dimension k.
* R knows FORGED={k forged channels}



Generalized Broadcast

« Suppose that S wants to
send k+1 elements a,, ..., a,.
* S constructs A(X) such that
A(X)= a, + a;x+ ...+ axK
» S sends A(l) througth channel |
fori=1, ...,n.
* This communication cost is n.



R recelves as follows.

« Suppose that FORGED={1, ..., k}.
* Rignores FORGED and
considers a shortened codeword
[A(k+1), ..., A(n)]
* |t turns out that
d=2(t—k)+1




R recelves as follows.

 Hence R can correct t-k errors.
* On the other nhand,
since there are k forged channels,
Enemy can forge more t-k channels.
* Therefore
R can receive a,, ..., a, correctly.



Transmission Rate

* By using this technique,
the cost of sending each A, is
reduced from tn to n.

* This implies that the
reduced from O(n?) to O(n).

1S



Efficiency

Trans. |Sender’'s | Receiver’s
rate Comp. Comp.
Basic scheme |O(n4) poly(n) poly(n)
More efficient | O(n?) poly(n) poly(n)
scheme
Final scheme | O(n) poly(n) poly(n)




Summary

* We solved the open problem
raised by Agarwal, Cramer and de Haan
at CRYPTO 2006.



2-round PSMT for n=2t+1

Trans. rate |Sender’s Receiver’s
comp. comp.
Agarwal et |O(n) exponential | exponential
al.'s schme
Proposed |O(n) poly(n) poly(n)

scheme




Thank you !



