

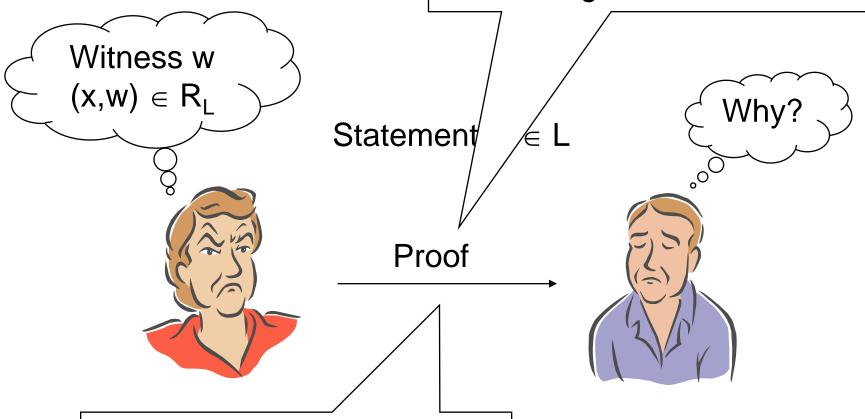
Efficient Non-interactive Proof Systems for Bilinear Groups

Jens Groth
University College London

Amit Sahai
University of California Los Angeles

Non-interactive proof

Zero-knowledge: Bob learns nothing about witness



Witness-indistinguishable: Bob does not learn *which* witness Alice has in mind

Yes dear, $x \in L$

A brief history of non-interactive zeroknowledge proofs

- Blum-Feldman-Micali 88
- Damgård 92
- Feige-Lapidot-Shamir 99
- Kilian-Petrank 98
- De Santis-Di Crescenzo-Persiano 02

Efficiency problems with non-interactive zero-knowledge proofs

- Non-interactive proofs for general NP-complete language such as Circuit SAT. Any practical statement such as "the ciphertext c contains a signature on m" must go through a size-increasing NP-reduction.
- Inefficient non-interactive proofs for Circuit SAT.
 Use the so-called "hidden random bits" method.

Our goal

 We want non-interactive proofs for statements arising in practice such as "the ciphertext c contains a signature on m". No NP-reduction!

We want high efficiency. Practical non-interactive proofs!

A brief history of non-interactive zeroknowledge proofs continued

	Circuit SAT	Practical statements	
Inefficient	Kilian-Petrank 98	Groth 06	
Efficient	Groth-Ostrovsky- Sahai 06	This work	

Bilinear group

$$G_1 = G_2 \text{ or } G_1 \neq G_2$$

Prime order or composite order

- G₁, G₂, G_T finite cyclic groups of order n
- P₁ generates G₁, P₂ generates G₂
- e: $G_1 \times G_2 \rightarrow G_T$
 - e(P₁,P₂) generates G_T
 - $e(aP_1,bP_2) = e(P_1,P_2)^{ab}$
- Deciding membership, group operations, bilinear map efficiently computable

Many possible assumptions: Subgroup Decision, Symmetric External Diffie-Hellman, Decison Linear, ...

Constructions in bilinear groups

$$a, b \in Z_n$$
, $A, C \in G_1$, $B, D \in G_2$

$$t = a + xb$$

$$T_1 = xY + xA + tC$$

$$T_2 = B+D+Z$$

$$t_T = e(T_1, B+bT_2)$$

Non-interactive cryptographic proofs for correctness of constructions

Yes, here is a proof.

Are the constructions correct? I do not know your secret x, Y, Z.

$$t = a + xb$$

$$T_1 = xY + xA + tC$$

$$T_2 = B+D+Z$$

$$t_T = e(T_1,B+bT_2)$$

— Proof

Cryptographic constructions

- Constructions can be built from
 - public exponents and public group elements
 - secret exponents and secret group elements
- Using any of the bilinear group operations
 - Addition and multiplication of exponents
 - Point addition or scalar multiplication in G₁ or G₂
 - Bilinear map e
 - Multiplication in G_T
- Our result: Non-interactive cryptographic proofs for correctness of a set of bilinear group constructions

Examples of statements we can prove

Here is a ciphertext c and a signature s. They
have been constructed such that s is a signature
on the secret plaintext.

 Here are three commitments A,B and C to secret exponents a,b and c. They have been constructed such that c=ab mod n.

Quadratic equations in a bilinear group

- Variables X_i 2 G₁; Y_i 2 G₂; x_i; y_i 2 Z_n
- Pairing product equations

$$t_{T} = \bigvee_{i=1}^{r_{1}} e(A_{i}; Y_{i}) \not c e(X_{i}; B_{i}) \not c e(X_{i}; Y_{j})^{\circ_{ij}}$$

$$i = 1 \qquad i = 1 \qquad i = 1 \qquad i = 1$$

Multi-scalar multiplication equations in G₁ (or G₂)

$$T_1 = \begin{bmatrix} x_1^{0} & x_1^{0} & x_1^{0} & x_1^{0} \\ y_i A_i + b_i X_i + & & \circ_{ij} y_j X_i \\ & & & i = 1 & & i = 1 \end{bmatrix}$$

Quadratic equations in Z_n

$$t = \begin{cases} x_{1}^{0} & x_{1}^{0} & x_{1}^{0} \\ a_{i} y_{i} + x_{i} b_{i} + \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & i = 1 \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0} \end{cases} \quad \begin{cases} x_{1}^{0} & x_{1}^{0} \\ & x_{1}^{0} \\ & x_{1}^{0}$$

Our contribution

- Statement S = (eq₁,...,eq_N) bilinear group equations
- Efficient non-interactive witness-indistinguishable (NIWI) proofs for satisfiability of all equations in S
- Efficient non-interactive zero-knowledge (NIZK) proofs for satisfiability of all equations in S (all t_T=1)
- Many choices of bilinear groups and cryptographic assumptions Subgroup Decision, Symmetric External Diffie-Hellman, Decision Linear, etc.
- Common reference string O(1) group elements

Size of NIWI proofs

Quadratic in **Z**_n

Each equation constant cost.

Cost independent of number of public constants and secret variables.

6

Cost of each variable/equation

Variable in G₁, G₂ or **Z**_n

Pairing product

MIWI proofs can have sub-linear size compared with statement!

A Decision

A De

Size of NIZK proofs

Cost of each variable/equation	Subgroup Decision	Symmetric External DH	Decision Linear
Variable in Z _n	1	2	3
Variable in G ₁ , G ₂	1 (+3)	2 (+10)	3 (+15)
Pairing product equation (t _T =1)	1	8	9
Multiscalar mult.	2	10	12
Quadratic in Z _n	1	4	6

Applications of efficient NIWI and NIZK proofs

- Constant size group signatures
 Boyen-Waters 07 (independently of our work)
 Groth 07
- Sub-linear size ring signatures Chandran-Groth-Sahai 07
- Non-interactive NIZK proof for correctness of shuffle Groth-Lu 07
- Non-interactive anonymous credentials Belienky-Chase-Kohlweiss-Lysyanskaya 08
- •

Where does the generality come from?

- View bilinear groups as special cases of modules with a bilinear map
- Commutative ring R
- R-modules A₁, A₂, A_T
- Bilinear map f: A₁ × A₂ → A_T

Pairing product equations

Pairing product equations

$$t_{T} = \bigvee^{Y_{1}} e(A_{i}; Y_{i}) \not c e(X_{i}; B_{i}) \not c e(X_{i}; Y_{j})^{\circ_{ij}}$$

$$i = 1 \qquad i = 1 \qquad i = 1$$

• Use $R = \mathbf{Z}_n$, $A_1 = G_1$, $A_2 = G_2$, $A_T = G_T$, f(X,Y) = e(X,Y) and write $A_T = G_T$ with additive notation to get

$$t_{T} = \int_{i=1}^{X^{n}} f(A_{i}; Y_{i}) + \int_{i=1}^{X^{n}} f(X_{i}; B_{i}) + \int_{i=1}^{X^{n}} f(X_{i}; Y_{j})$$

Multi-scalar multiplication in G₁

Multi-scalar multiplication equations in G₁

• Use $R = \mathbf{Z}_n$, $A_1 = G_1$, $A_2 = \mathbf{Z}_n$, $A_T = G_1$, f(X,y) = yX

$$T_{1} = \int_{i=1}^{X^{0}} f(A_{i}; y_{i}) + \int_{i=1}^{X^{0}} f(X_{i}; b_{i}) + \int_{i=1}^{X^{0}} f(X_{i}; y_{j}) + \int_{i=1}^{X^{0}} f(X_{i}; y_{j}$$

Quadratic equation in Z_n

• Quadratic equations in
$$\mathbf{Z}_n$$

$$x^0 \qquad x^0 \qquad x^0 \qquad x^0 \qquad x^0 \qquad x^0 \qquad x^0 \qquad x^1 \qquad x_i \, y_i \qquad x_i \, y_j \qquad x_i \, y_j \qquad x_i \, y_i \qquad x_i \, y_i \qquad x_i \, y_j \qquad x_i \, y_j \qquad x_i \, y_i \qquad x_i \,$$

• Use $R = Z_n$, $A_1 = Z_n$, $A_2 = Z_n$, $A_T = Z_n$, f(x,y) = xy

$$t = \begin{cases} x_{i}^{0} & x_{i}^{0} \\ f(a_{i}; y_{i}) + f(x_{i}; b_{i}) + \\ i = 1 \end{cases} f(x_{i}; y_{i}) + \begin{cases} x_{i}^{0} & x_{i}^{0} \\ f(x_{i}; y_{i}) + \\ i = 1 \end{cases} f(x_{i}; y_{i})$$

Generality continued

- All four types of bilinear group equations can be seen as example of quadratic equations over modules with bilinear map
- The assumptions Subgroup Decision, Symmetric External Diffie-Hellman, Decision Linear, etc., can be interpreted as assumption in (different) modules with bilinear map as well

Sketch of NIWI proofs

$$t = \begin{cases} x_i^0 & x_i^0 \\ t = f(a_i; y_i) + f(x_i; b_i) + f(x_i; y_i) \end{cases}$$

$$i = 1 \qquad i = 1 \qquad i = 1$$

- Commit to secret elements in A₁ and A₂
- Commitment scheme is homomorphic with respect to addition in A₁, A₂, A_T and with respect to bilinear map f
- Can therefore use homomorphic properties to get commitment c = commit_{A_T}(t; r)
- Reveal commitment randomizer r to verify that equation is satisfied
- To get witness-indistinguishability first rerandomize commitment c before opening with r'

Final remarks

- Summary: Efficient non-interactive cryptographic proofs for use in bilinear groups
- Open problem: Construct cryptographically useful modules with bilinear map that are not based on bilinear groups
- Acknowledgment: Thanks to Brent Waters
- Questions?