
Collisions for the LPS expander graph hash
function

Jean-Pierre Tillich1 and Gilles Zémor2

1INRIA, Équipe SECRET

2Bordeaux Mathematics Institute

Eurocrypt 2008, Istanbul

Hash functions from graphs

Take a large graph G, (e.g. 21000 vertices), regular of small
degree ∆.

Input text ∈ {0, 1, . . . ,∆− 2}∗ −→ non-bactracking walk
from fixed vertex

hashed value −→ endpoint.

∆
hashed value

...

Hash functions from graphs

Take a large graph G, (e.g. 21000 vertices), regular of small
degree ∆.

Input text ∈ {0, 1, . . . ,∆− 2}∗ −→ non-bactracking walk
from fixed vertex

hashed value −→ endpoint.

hashed value
...

Collisions −→ cycles.

Hash functions from expander graphs

Graph should be easy to describe.

No short cycles.

Suggestion (Charles, Goren, Lauter 06): use known
expander graphs. Advantage: rapidly-mixing property.
Distribution of hashed values is almost uniform for short
O(log #{vertices}) uniform inputs.

In particular: use the Lubotzky, Phillips, Sarnak (LPS)
Ramanujan graphs.

Strength of the function rests on supposed difficulty of
finding explicit short cycles.

Hash functions from expander graphs

Graph should be easy to describe.

No short cycles.

Suggestion (Charles, Goren, Lauter 06): use known
expander graphs. Advantage: rapidly-mixing property.
Distribution of hashed values is almost uniform for short
O(log #{vertices}) uniform inputs.

In particular: use the Lubotzky, Phillips, Sarnak (LPS)
Ramanujan graphs.

Strength of the function rests on supposed difficulty of
finding explicit short cycles.

History of the large graph hashing strategy: later on.

The LPS Ramanujan graphs

Graph G is a Cayley graph. Vertices are elements of a group G
and x ←→ y is an edge iff y = xs for s in a fixed set S (of
generators).

The LPS Ramanujan graphs

Graph G is a Cayley graph. Vertices are elements of a group G
and x ←→ y is an edge iff y = xs for s in a fixed set S (of
generators).

Specifically: p large prime, ℓ small prime ≡ 1 mod 4,
G a group of 2× 2 matrices, elements in Fp, generator set S

made up of the matrices

S =

(

a + ιb c + ιd
−c + ιd a− ιb

)

where ι2 = −1 in Fp and a, b, c, d integers such that

detS = a2 + b2 + c2 + d2 = ℓ
a > 0, a ≡ 1 (mod 2)

b ≡ c ≡ d ≡ 0 (mod 2)

The LPS Ramanujan graphs (2)

Identify matrices obtained from each other through
multiplication by λ ∈ Fp. S generates a subgroup G of
PGL2(Fp), (isomorphic to PSL2(Fp)), and S = S−1. |S| = ℓ + 1.

This is the graph Xℓ,p.

#Vertices = p(p2 − 1)/2,

degree ∆ = ℓ + 1.

Facts:

no small cycles: smallest has length 2 log∆−1 p

good expansion properties.

The LPS Ramanujan graphs (3)

Example, ℓ = 5:

S1 =

(

1 2
−2 1

)

S2 =

(

1 + 2ι 0
0 1− 2ι

)

S3 =

(

1 2ι
2ι 1

)

S4 =

(

1 −2ι
−2ι 1

)

S5 =

(

1− 2ι 0
0 1 + 2ι

)

S6 =

(

1 −2
2 1

)

We have: S = S−1.

S1S6 =

(

1 2
−2 1

)(

1 −2
2 1

)

= 5
(

1 0
0 1

)

=

(

1 0
0 1

)

in G

The LPS Ramanujan graphs (3)

Example, ℓ = 5:

S1 =

(

1 2
−2 1

)

S2 =

(

1 + 2ι 0
0 1− 2ι

)

S3 =

(

1 2ι
2ι 1

)

S4 =

(

1 −2ι
−2ι 1

)

S5 =

(

1− 2ι 0
0 1 + 2ι

)

S6 =

(

1 −2
2 1

)

We have: S = S−1.

S1S6 =

(

1 2
−2 1

)(

1 −2
2 1

)

= 5
(

1 0
0 1

)

=

(

1 0
0 1

)

in G

Input text of length t is put into 1− 1 correspondence with
product

G1G2 . . . Gt

such that Gi ∈ S, GiGi+1 6= 1.

Looking for collisions
A collision is equivalent to a short cycle in the graph Xℓ,p, i.e. a
string G1G2 . . . Gt of elements of S such that GiGi+1 6= 1 and

t
∏

i=1

Gi = 1 in G.

Looking for collisions
A collision is equivalent to a short cycle in the graph Xℓ,p, i.e. a
string G1G2 . . . Gt of elements of S such that GiGi+1 6= 1 and

t
∏

i=1

Gi = 1 in G.

The idea.

Looking for collisions
A collision is equivalent to a short cycle in the graph Xℓ,p, i.e. a
string G1G2 . . . Gt of elements of S such that GiGi+1 6= 1 and

t
∏

i=1

Gi = 1 in G.

The idea.

Lift the graph Xℓ,p to the Cayley graph generated by the
matrices

M(a, b, c, d) =

(

a + ib c + id
−c + id a− ib

)

where i ∈ C and (as before)

detS = a2 + b2 + c2 + d2 = ℓ
a > 0, a ≡ 1 (mod 2)

b ≡ c ≡ d ≡ 0 (mod 2)

The universal cover of Xℓ,p

The set of products of M(a, b, c, d)’s (lifted generators of S) is

Ω =

{(

a + ib c + id
−c + id a− ib

)
∣

∣

∣

∣

(a, b, c, d) ∈ Ew for some w > 0
}

where Ew is the set of 4-tuples (a, b, c, d) ∈ Z
4 such that

a2 + b2 + c2 + d2 = ℓw

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2).

Factoring in Ω is easy. If M = G1G2 . . . Gt , find Gt by finding the
unique (lifted) generator S ∈ S such that MS has entries in Z[i]
divisible by ℓ ! Then Gt = S−1.

Lifting the identity

Finding a collision is now reduced to lifting the identity element
in G to a matrix of Ω with reasonable length w . Means find

(

a + ib c + id
−c + id a − ib

)

such that the integers a, b, c, d satisfy

a2 + b2 + c2 + d2 = ℓw

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2)

and b, c, d , multiples of p.

Lifting the identity (2)

set b = 2px , c = 2py , d = 2pz. The search for solutions of
a2 + b2 + c2 + d2 = ℓw becomes

a2 + 4p2(x2 + y2 + z2) = ℓ2k

and
(ℓk − a)(ℓk + a) = 4p2(x2 + y2 + z2).

Set a = ℓk − 2mp2, arbitrary m (in practice m = 1, 2). We get

x2 + y2 + z2 = m(ℓk −mp2).

Solve through taking random z, check whether right hand side
−z2 is sum of two squares.

fast computation of collisions

Limiting factor is number of random choices of z to get a sum of
two squares (log p). Then decompose into sum of two squares
(log p).

In practice: overall complexity small power of log p. No problem
for p 1000-bit prime.

History

A similar scheme (Z. 91) with G = SL2(Fp) and set of
generators S consisting of

S1 =

(

1 1
0 1

)

S2 =

(

1 0
1 1

)

(Graph G is directed).

History

A similar scheme (Z. 91) with G = SL2(Fp) and set of
generators S consisting of

S1 =

(

1 1
0 1

)

S2 =

(

1 0
1 1

)

(Graph G is directed).

(Tillich-Z. 93) collisions through lifting the identity to a product
of S1’s and S2’s in SL2(Z). Then use Euclidean algorithm to
finish factorisation. Problem lies in the (too large) density of the
set of products of S1’s and S2’s in SL2(Z).

(Bold) comparison with factoring

How does one factor an integer n ?

(Bold) comparison with factoring

How does one factor an integer n ?

Take a set S = {22, 32, 52, . . . , ℓ2} (set of squares of small
primes). Generator set of Cayley graph G over (multiplicative)
subgroup of Z/nZ (the invertible squares).

Lift random square to a product of elements of S in Z. Finish
with Euclidean algorithm.

Conclusion: Future for Cayley-graph based hashing ?

Goal: defeat density or lifting attacks.

Suggestion for LPS-based hashing: throw away some
generators. For S ∈ S keep either S or S−1 but not both. Keeps
part of the expansion properties. Speed of convergence to
uniform less easy to estimate but small diameter easy to prove.

Other possibilities: look for other interesting sets of generators
of SL2() groups with a view to defeating lifting attacks. How
does one find short factorisations of 1 in the group ?

(Tillich-Z. 94) G = SL2(F2m) and set of generators S consisting
of:

S1 =

(

X 1
1 0

)

S2 =

(

X X + 1
1 1

)

For given trusted defining polynomials of F2m , no known
method for producing short factorisations, i.e.
reasonable-length collisions.

	A graph-based hashing strategy
	LPS graphs
	Search for collisions
	History

