Collisions for the LPS expander graph hash function

Jean-Pierre Tillich¹ and Gilles Zémor²

¹INRIA, Équipe SECRET

²Bordeaux Mathematics Institute

Eurocrypt 2008, Istanbul

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hash functions from graphs

Take a large graph \mathcal{G} , (e.g. 2¹⁰⁰⁰ vertices), regular of small degree Δ .

• Input text $\in \{0,1,\ldots,\Delta-2\}^* \longrightarrow$ non-bactracking walk from fixed vertex

Hash functions from graphs

Take a large graph \mathcal{G} , (e.g. 2¹⁰⁰⁰ vertices), regular of small degree Δ .

• Input text $\in \{0,1,\ldots,\Delta-2\}^* \longrightarrow$ non-bactracking walk from fixed vertex

• Collisions \rightarrow cycles.

Hash functions from expander graphs

- Graph should be easy to describe.
- No short cycles.
- Suggestion (Charles, Goren, Lauter 06): use known expander graphs. Advantage: rapidly-mixing property. Distribution of hashed values is almost uniform for short O(log #{vertices}) uniform inputs.

In particular: use the Lubotzky, Phillips, Sarnak (LPS) Ramanujan graphs.

 Strength of the function rests on supposed difficulty of finding explicit short cycles.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Hash functions from expander graphs

- Graph should be easy to describe.
- No short cycles.
- Suggestion (Charles, Goren, Lauter 06): use known expander graphs. Advantage: rapidly-mixing property. Distribution of hashed values is almost uniform for short O(log #{vertices}) uniform inputs.

In particular: use the Lubotzky, Phillips, Sarnak (LPS) Ramanujan graphs.

- Strength of the function rests on supposed difficulty of finding explicit short cycles.
- History of the large graph hashing strategy: later on.

The LPS Ramanujan graphs

Graph \mathcal{G} is a *Cayley graph*. Vertices are elements of a group *G* and $x \leftrightarrow y$ is an edge iff y = xs for *s* in a fixed set \mathcal{S} (of generators).

The LPS Ramanujan graphs

Graph \mathcal{G} is a *Cayley graph*. Vertices are elements of a group *G* and $x \leftrightarrow y$ is an edge iff y = xs for *s* in a fixed set \mathcal{S} (of generators).

Specifically: *p* large prime, ℓ small prime $\equiv 1 \mod 4$, *G* a group of 2 × 2 matrices, elements in \mathbb{F}_{p} , generator set \$ made up of the matrices

$$S = egin{pmatrix} \mathbf{a} + \iota \mathbf{b} & \mathbf{c} + \iota \mathbf{d} \ -\mathbf{c} + \iota \mathbf{d} & \mathbf{a} - \iota \mathbf{b} \end{pmatrix}$$

where $\iota^2 = -1$ in \mathbb{F}_p and a, b, c, d integers such that

$$\begin{cases} \det S = a^2 + b^2 + c^2 + d^2 = \ell \\ a > 0, \ a \equiv 1 \pmod{2} \\ b \equiv c \equiv d \equiv 0 \pmod{2} \end{cases}$$

The LPS Ramanujan graphs (2)

Identify matrices obtained from each other through multiplication by $\lambda \in \mathbb{F}_p$. \$ generates a subgroup *G* of $PGL_2(\mathbb{F}_p)$, (isomorphic to $PSL_2(\mathbb{F}_p)$), and $\$ = \$^{-1}$. $|\$| = \ell + 1$.

This is the graph $X_{\ell,p}$.

•
$$\#$$
Vertices = $p(p^2 - 1)/2$,

• degree $\Delta = \ell + 1$.

Facts:

no small cycles: smallest has length 2 log_{Δ-1} p

good expansion properties.

The LPS Ramanujan graphs (3)

Example, $\ell = 5$:

$$\begin{array}{ll} S_1 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} & S_2 = \begin{pmatrix} 1+2\iota & 0 \\ 0 & 1-2\iota \end{pmatrix} & S_3 = \begin{pmatrix} 1 & 2\iota \\ 2\iota & 1 \end{pmatrix} \\ S_4 = \begin{pmatrix} 1 & -2\iota \\ -2\iota & 1 \end{pmatrix} & S_5 = \begin{pmatrix} 1-2\iota & 0 \\ 0 & 1+2\iota \end{pmatrix} & S_6 = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \end{array}$$

We have: $S = S^{-1}$.

$$S_1S_6 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{ in } G$$

The LPS Ramanujan graphs (3)

Example, $\ell = 5$:

$$\begin{array}{ll} S_1 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} & S_2 = \begin{pmatrix} 1+2\iota & 0 \\ 0 & 1-2\iota \end{pmatrix} & S_3 = \begin{pmatrix} 1 & 2\iota \\ 2\iota & 1 \end{pmatrix} \\ S_4 = \begin{pmatrix} 1 & -2\iota \\ -2\iota & 1 \end{pmatrix} & S_5 = \begin{pmatrix} 1-2\iota & 0 \\ 0 & 1+2\iota \end{pmatrix} & S_6 = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \end{array}$$

We have: $S = S^{-1}$.

$$S_1 S_6 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 in G

Input text of length t is put into 1 - 1 correspondence with product

$$G_1 G_2 \ldots G_t$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

such that $G_i \in S$, $G_i G_{i+1} \neq 1$.

Looking for collisions

A collision is equivalent to a short cycle in the graph $X_{\ell,p}$, i.e. a string $G_1 G_2 \dots G_t$ of elements of *S* such that $G_i G_{i+1} \neq 1$ and

$$\prod_{i=1}^t G_i = 1 \quad \text{in } G_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Looking for collisions

A collision is equivalent to a short cycle in the graph $X_{\ell,p}$, i.e. a string $G_1 G_2 \dots G_t$ of elements of *S* such that $G_i G_{i+1} \neq 1$ and

$$\prod_{i=1}^t G_i = 1 \quad \text{in } G.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The idea.

Looking for collisions

A collision is equivalent to a short cycle in the graph $X_{\ell,p}$, i.e. a string $G_1 G_2 \dots G_t$ of elements of *S* such that $G_i G_{i+1} \neq 1$ and

$$\prod_{i=1}^t G_i = 1 \quad \text{in } G.$$

The idea.

Lift the graph $X_{\ell,p}$ to the Cayley graph generated by the matrices

$$M(a, b, c, d) = \begin{pmatrix} a + ib & c + id \\ -c + id & a - ib \end{pmatrix}$$

where $i \in \mathbb{C}$ and (as before)

$$\begin{cases} \det S = a^2 + b^2 + c^2 + d^2 = \ell \\ a > 0, \ a \equiv 1 \pmod{2} \\ b \equiv c \equiv d \equiv 0 \pmod{2} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The universal cover of $X_{\ell,p}$

The set of products of M(a, b, c, d)'s (lifted generators of S) is

$$\Omega = \left\{ \left. \begin{pmatrix} \textbf{a} + i \textbf{b} & \textbf{c} + i \textbf{d} \\ -\textbf{c} + i \textbf{d} & \textbf{a} - i \textbf{b} \end{pmatrix} \right| (\textbf{a}, \textbf{b}, \textbf{c}, \textbf{d}) \in \textbf{E}_{w} \text{ for some } w > 0 \right\}$$

where E_w is the set of 4-tuples $(a, b, c, d) \in \mathbb{Z}^4$ such that

$$\begin{cases} a^2 + b^2 + c^2 + d^2 &= \ell^w \\ a > 0, \ a &\equiv 1 \pmod{2} \\ b \equiv c \equiv d &\equiv 0 \pmod{2}. \end{cases}$$

Factoring in Ω is easy. If $M = G_1 G_2 \dots G_t$, find G_t by finding the unique (lifted) generator $S \in S$ such that *MS* has entries in $\mathbb{Z}[i]$ divisible by ℓ ! Then $G_t = S^{-1}$.

Lifting the identity

Finding a collision is now reduced to lifting the identity element in *G* to a matrix of Ω with reasonable length *w*. Means find

$$egin{pmatrix} {\sf a}+{\it ib} & {\it c}+{\it id} \ {\it -c}+{\it id} & {\it a}-{\it ib} \end{pmatrix}$$

such that the integers a, b, c, d satisfy

$$\begin{cases} a^{2} + b^{2} + c^{2} + d^{2} = \ell^{w} \\ a > 0, \ a \equiv 1 \pmod{2} \\ b \equiv c \equiv d \equiv 0 \pmod{2} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and b, c, d, multiples of p.

Lifting the identity (2)

set b = 2px, c = 2py, d = 2pz. The search for solutions of $a^2 + b^2 + c^2 + d^2 = \ell^w$ becomes

$$a^2 + 4p^2(x^2 + y^2 + z^2) = \ell^{2k}$$

and

$$(\ell^k - a)(\ell^k + a) = 4p^2(x^2 + y^2 + z^2).$$

Set $a = \ell^k - 2mp^2$, arbitrary *m* (in practice m = 1, 2). We get

$$x^{2} + y^{2} + z^{2} = m(\ell^{k} - mp^{2}).$$

Solve through taking random *z*, check whether right hand side $-z^2$ is sum of two squares.

fast computation of collisions

Limiting factor is number of random choices of z to get a sum of two squares (log p). Then decompose into sum of two squares (log p).

In practice: overall complexity small power of $\log p$. No problem for p 1000-bit prime.

History

A similar scheme (Z. 91) with $G = SL_2(\mathbb{F}_p)$ and set of generators S consisting of

$$S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

(Graph 9 is *directed*).

History

A similar scheme (Z. 91) with $G = SL_2(\mathbb{F}_p)$ and set of generators S consisting of

$$S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

(Graph 9 is *directed*).

(Tillich-Z. 93) collisions through lifting the identity to a product of S_1 's and S_2 's in $SL_2(\mathbb{Z})$. Then use Euclidean algorithm to finish factorisation. Problem lies in the (too large) density of the set of products of S_1 's and S_2 's in $SL_2(\mathbb{Z})$.

(日) (日) (日) (日) (日) (日) (日) (日)

(Bold) comparison with factoring

How does one factor an integer n?

(Bold) comparison with factoring

How does one factor an integer n?

Take a set $S = \{2^2, 3^2, 5^2, \dots, \ell^2\}$ (set of squares of small primes). Generator set of Cayley graph \mathcal{G} over (multiplicative) subgroup of $\mathbb{Z}/n\mathbb{Z}$ (the invertible squares).

Lift random square to a product of elements of $\mathbb S$ in $\mathbb Z.$ Finish with Euclidean algorithm.

(日) (日) (日) (日) (日) (日) (日) (日)

Conclusion: Future for Cayley-graph based hashing ?

Goal: defeat density or lifting attacks.

Suggestion for LPS-based hashing: throw away some generators. For $S \in S$ keep either S or S^{-1} but not both. Keeps part of the expansion properties. Speed of convergence to uniform less easy to estimate but small diameter easy to prove.

Other possibilities: look for other interesting sets of generators of $SL_2()$ groups with a view to defeating lifting attacks. How does one find short factorisations of 1 in the group ?

(Tillich-Z. 94) $G = SL_2(\mathbb{F}_{2^m})$ and set of generators S consisting of:

$$S_1 = \begin{pmatrix} X & 1 \\ 1 & 0 \end{pmatrix}$$
 $S_2 = \begin{pmatrix} X & X+1 \\ 1 & 1 \end{pmatrix}$

For given trusted defining polynomials of \mathbb{F}_{2^m} , no known method for producing short factorisations, i.e. reasonable-length collisions.