The Twin Diffie-Hellman
Problem and Applications

David Cash Eike Kiltz Victor Shoup
Georgia Tech CWI NYU

(Hashed) ElIGamal Encryption

pk:X:gX

Pick randomy
Y=g¥ K=H(XY)

Ingredients:
(Enc,Dec) - Symmetric enc scheme
H - Hash function
g - generator of G, prime order

% ¢ = Enck(m) sk =x %
(Y, c) R

K = H(Y*)
m = Deck(c)

Proving EIGamal Secure

Necessary for security:
Given random g*, g¥ computing DH(g*, g¥) = g*¥ is hard.

This is the Diffie-Hellman assumption.
Claim:

The Diffie-Hellman assumption is not sufficient to prove
CCA security!

DH is not sufficient for CCA Security

Consider the following CCA adversary:

pk=X, givenY, Z:
Choose random m
K =H(Z), c = Enck(m)

(Y, c)

N
K’ = H(Y¥)
m’ = Decy/(c)

DH is not sufficient for CCA Security

Consider the following CCA adversary:

pk=X, givenY, Z:
Choose random m
K =H(Z), c = Enck(m)

(Y, c)

N
K’ = H(Y¥)
m’ = Decy/(c)

<

(Case 1: Z =DH(X,Y)
Then m’ = m always

Case 2: Z # DH(X,Y)
Then m’ #m w.h.p.

| J

DH is not sufficient for CCA Security

» A CCA adversary is able to test if DH(X, Y) =Z for Y and Z of
its choosing.

* Thus giving the adversary a decryption oracle also gives
him a Decisional DH oracle.

» But evaluating DDH queries is hard for the adversary alone,
and thus some information about x may be leaked by
decryption queries.

» How can we prove security of EIGamal?

Stronger Assumptions

Fix a predicate called DHP:
DHP(X,Y,Z)=1 iff DH(X,Y)= Z

Gap DH Assumption [Okamoto, Pointcheval '01]
Hard to compute:

DH(g*, g¥) = g®¥ with DHP(-, -, -) oracle

Strong DH Assumption [Abdalla, Bellare, Rogaway '01]
Hard to compute:
DH(g*, g¥) =g with DHP(g*, -, -) oracle

All equivalent to DH assumption in pairing
groups, but not in general (?)

Proving Security of EIGamal

Option #1: Use an assumption stronger than DH.

Theorem: [ABR’01] ElIGamal is secure against

chosen ciphertext attacks in the random oracle
model, if

» Strong DH assumption holds
 (Enc, Dec) is chosen ciphertext attack secure

But making stronger assumptions is undesirable.

Proving Security of EIGamal

Option #2: Prove security from the DH assumption,
but add some redundancy to the ciphertext.

This is done in all DH-Based schemes: Fujisaki-
Okamoto, GEM, REACT, ...

But longer ciphertexts are undesirable for some
applications.

New Option: Twin Diffie-Hellman

- Another way to modify EIGamal so that:

1. We can prove security from the DH assumption

2. The ciphertext length remains short (like EIGamal).
- This modification is actually a general technique:

- We define a interactive variant of the Diffie-Hellman problem
called the Strong Twin Diffie-Hellman problem.

« We show Strong Twin Diffie-Hellman assumption is
equivalent to the (ordinary) Diffie-Hellman assumption.

Key point: We give an interactive assumption that is
equivalent to (ordinary) Diffie-Hellman assumption.

More Twinning

- Same technique works for Bilinear and Decisional versions of the
DH assumption.

- We give several applications of technique to design schemes

with improvements and simple security proofs from well-studied
DH assumptions:

» Encryption - Random Oracle and Standard Model
- Key exchange

- |dentity Based Encryption (bilinear form)

 More...

Strong Twin Diffie-Hellman

Twin Diffie-Hellman (2DH) Assumption
Hard to compute:

2DH(g", g¥, g") = (8", g*Y)
Define a “twin” predicate called 2DHP:
2DHP(X, X, Y, Z,2’)=1 iff 2DH(X, X’,Y)= (Z,Z’)

Strong Twin Diffie-Hellman Assumption
Hard to compute:

2DH(g*, g*, g") = (g, g*")
w/ 2DHP(g*, g*, -, -, -) oracle

Strong Twin Diffie-Hellman

Tyl Biee— s et a) g
HTheorem:

Strong Twin Diffie Hellman assumption holds iff

5 the Diffie-Hellman assumption holds.
e

\

Strong Twin Diffie-Hellman Assumption
Hard to compute:

2DH(g*, g*, g') = (g, g*V)
w/ 2DHP(g*, g*, -, -, -) oracle

Proof of Main Theorem

Theorem: Strong 2DH hard < DH hard

Part 1: Strong 2DH hard = DH hard (Almost trivial)

Part 2: DH hard = Strong 2DH hard

How to reduce: outline
. DH adversary gets (X, Y) as input.
. Compute some X’ related to X.
. Provide strong 2DH adversary with (X, X, Y) and
answer DHP(X, X’, -, - , -) oracle queries.
. Strong 2DH adversary outputs (Z, Z’), and DH
adversary outputs Z.

Proof: DH = Strong 2DH

« Assume there exists Strong Twin DH adversary B

« Construct DH adversary A:
Input: (X, Y)
ldea: X’ :=g" X5 (=g¥,x ' =r+xs)

Run strong 2DH adversary on (X, X', Y)
B outputs (Z, Z') and A returns Z.
« How to simulate Strong Twin DH adversary’s oracle?
2DHP(X, X', -, -, *)
A doesn’t know x, x’!

Tool: Trapdoor Test

» Correct answer:
2DHP(X, X', Y,2,Z")=1iff “2DH(X, X", Y)=(Z, Z")"
iff X¥=Zand X'¥=2'
» Simulated answer:
SIM(X, X’,Y,Z2,2")=1 iff Y'Zs=7

Claim: Conditioned on any fixed X’:
Correct answer = Simulated answer
with prob.1-1/|G]| (overr, s).

(Proof is simple case analysis)

DH = Strong 2DH

- If all oracle queries answered correctly, then
simulation of Strong 2DH problem is perfect.

B solves Strong 2DH =
A solves DH w.p. 1 - (#queries)/| G|

» Reduction is tight: reductions to Strong 2DH
imply reductions to DH with similar tightness.

Application 1: Twin ElGamal

pk = (X, X’) = (g* ")
Pick random y
Y=g¥ K=H(XY, X"Y)

% ¢ = Enck(m) v o

(CCA secure if
1. H modeled as random oracle
2. (Enc,Dec) is CCA secure

3. The DH assumption holds

\

\

K =H(Y* Y*)
m = Deck(c)

Twin ElIGamal v. Other Schemes

Pros:
1. Security based on DH, not Strong DH.

2. Short ciphertexts - one group element of overhead when
(Enc,Dec) is length-preserving.

3. Analysis is simple - essentially like Hashed ElGamal,
except using Strong Twin DH instead of Strong DH.

Cons:
1. Slower encryption (decryption can be optimized though).

2. Larger keys.

Non-Interactive Key Exchange

All public keys stored in a directory - symmetric keys computed
offline

Security: symmetric keys look random to adversary who
inserts “rogue keys” into directory.

Sk=XB
Directory

Non-Interactive Key Exchange

Security of DH protocol:
Secure against active adversaries in random oracle
model if the Strong DH assumption holds.

sk = XB
Directory Xg = g¥e

N
Xs

Application 2: Twin DH Key Exchange

e

Security of Twin DH protocol:
Secure against active adversaries in random oracle
model if the DH assumption holds.

&

sk = xa, X'A sk = xg, X'
Xa= gXA’ X’A= gx'A Directory Xg = gXB, X’B — gX'B

Xa, X'a 5 Xg, X'
Xa, X'a
Xs, X's Xg, X's Xa, X'a

Kas = H(A,B,Xg*2 Xg*'a, X’g*a X’gX'2) Kag = H(A,B,XaXe X’ aXe X X8 X’ aX8)

Application 3: Twin Cramer-Shoup

We give a new efficient CCA-secure public-key encryption
scheme without random oracles.

 Security based on Hashed DDH assumption, which is
generally weaker than DDH.

- Reduce to Strong Twin Hashed-DDH assumption, i.e.

Hashed DDH with an oracle.
- Simple analysis - resembles some IBE proofs

+ Variant gives security from DH assumption (not DDH!), but is
less efficient and has a loose reduction.

 Similar unpublished schemes due to [Waters] and [Hanaoka,
Kurosawal]

Other applications

1. Identity Based Encryption

- Twin Boneh-Franklin/Sakai-Kasahara: Short ciphertexts and
tighter reduction, but less efficient.

2. Simple technique for securing Password Authenticated Key
Exchange against server compromise.

3. Analysis of Shoup’s Diffie-Hellman “self corrector”.

Conclusion

General technique: Twin Diffie-Hellman and Trapdoor Test

Interactive assumptions that are useful and no stronger than
basic DH-type assumptions

Applications
1. ElGamal encryption
. CCA encryption without random oracles
. Non-interactive key exchange
. PAKE
. IBE

. More... see full version on eprint.

Thank you!

