The Twin Diffie-Hellman Problem and Applications

<u>David Cash</u> Georgia Tech Eike Kiltz CWI

Victor Shoup NYU

(Hashed) ElGamal Encryption

$$pk = X = g^{x}$$

Pick random y

$$Y = g^{y}, K = H(X^{y})$$

$$c = Enc_K(m)$$

Ingredients:

(Enc,Dec) - Symmetric enc scheme

H - Hash function

g - generator of G, prime order

$$\Rightarrow$$
 \Rightarrow

$$K = H(Y^{x})$$

 $m = Dec_{K}(c)$

Proving ElGamal Secure

Necessary for security:

Given random g^x , g^y computing DH(g^x , g^y) = g^{xy} is hard.

This is the Diffie-Hellman assumption.

Claim:

The Diffie-Hellman assumption is not sufficient to prove CCA security!

DH is not sufficient for CCA Security

Consider the following CCA adversary:

```
pk = X, given Y, Z:

Choose random m

K = H(Z), c = Enc_K(m)

(Y, c)
K' = H(Y^X)
m' = Dec_{K'}(c)
```

DH is not sufficient for CCA Security

Consider the following CCA adversary:

```
pk = X, given Y, Z:
     Choose random m
     K = H(Z), c = Enc_K(m)
                                 (Y, c)
                                                      K' = H(Y^{x})
                                                      m' = Dec_{K'}(c)
                                  m'
Case 1: Z = DH(X,Y)
   Then m' = m always
Case 2: \mathbb{Z} \neq DH(X,Y)
   Then m' \neq m w.h.p.
```

DH is not sufficient for CCA Security

- A CCA adversary is able to test if DH(X, Y) = Z for Y and Z of its choosing.
- Thus giving the adversary a decryption oracle also gives him a Decisional DH oracle.
- But evaluating DDH queries is hard for the adversary alone, and thus some information about x may be leaked by decryption queries.
- How can we prove security of ElGamal?

Stronger Assumptions

Fix a predicate called DHP:

$$DHP(X, Y, Z) = 1$$
 iff $DH(X, Y) = Z$

Gap DH Assumption [Okamoto, Pointcheval '01]

Hard to compute:

$$DH(g^{x}, g^{y}) = g^{xy}$$
 with $DHP(\cdot, \cdot, \cdot)$ oracle

Strong DH Assumption [Abdalla, Bellare, Rogaway '01] Hard to compute:

$$DH(g^{x}, g^{y}) = g^{xy}$$
 with $DHP(g^{x}, \cdot, \cdot)$ oracle

All equivalent to DH assumption in pairing groups, but not in general (?)

Proving Security of ElGamal

Option #1: Use an assumption stronger than DH.

Theorem: [ABR'01] ElGamal is secure against chosen ciphertext attacks in the random oracle model, if

- Strong DH assumption holds
- (Enc, Dec) is chosen ciphertext attack secure

But making stronger assumptions is undesirable.

Proving Security of ElGamal

Option #2: Prove security from the DH assumption, but add some redundancy to the ciphertext.

This is done in all DH-Based schemes: Fujisaki-Okamoto, GEM, REACT, ...

But longer ciphertexts are undesirable for some applications.

New Option: Twin Diffie-Hellman

- Another way to modify ElGamal so that:
 - 1. We can prove security from the DH assumption
 - 2. The ciphertext length remains short (like ElGamal).
- This modification is actually a general technique:
 - We define a interactive variant of the Diffie-Hellman problem called the Strong Twin Diffie-Hellman problem.
 - We show Strong Twin Diffie-Hellman assumption is equivalent to the (ordinary) Diffie-Hellman assumption.
 - **Key point:** We give an **interactive** assumption that is equivalent to **(ordinary)** Diffie-Hellman assumption.

More Twinning

- Same technique works for Bilinear and Decisional versions of the DH assumption.
- We give several applications of technique to design schemes with improvements and simple security proofs from well-studied DH assumptions:
 - Encryption Random Oracle and Standard Model
 - Key exchange
 - Identity Based Encryption (bilinear form)
 - More...

Strong Twin Diffie-Hellman

Twin Diffie-Hellman (2DH) Assumption

Hard to compute:

$$2DH(g^{x}, g^{x'}, g^{y}) = (g^{xy}, g^{x'y})$$

Define a "twin" predicate called 2DHP:

$$2DHP(X, X', Y, Z, Z') = 1$$
 iff $2DH(X, X', Y) = (Z, Z')$

Strong Twin Diffie-Hellman Assumption

Hard to compute:

$$2DH(g^{x}, g^{x'}, g^{y}) = (g^{xy}, g^{x'y})$$

w/ 2DHP(g^{x} , $g^{x'}$, \cdot , \cdot , \cdot) oracle

Strong Twin Diffie-Hellman

Theorem:
Strong Twin Diffie Hellman assumption holds iff the Diffie-Hellman assumption holds.

De

Strong Twin Diffie-Hellman Assumption

Hard to compute:

$$2DH(g^{x}, g^{x'}, g^{y}) = (g^{xy}, g^{x'y})$$

w/ 2DHP(g^x , $g^{x'}$, \cdot , \cdot , \cdot) oracle

Proof of Main Theorem

Theorem: Strong 2DH hard ⇔ DH hard

Part 1: Strong 2DH hard ⇒ DH hard (Almost trivial)

Part 2: DH hard ⇒ Strong 2DH hard

How to reduce: outline

- 1. DH adversary gets (X, Y) as input.
- 2. Compute some X' related to X.
- 3. Provide strong 2DH adversary with (X, X', Y) and answer DHP $(X, X', \cdot, \cdot, \cdot)$ oracle queries.
- 4. Strong 2DH adversary outputs (**Z**, **Z**'), and DH adversary outputs **Z**.

Proof: DH ⇒ Strong 2DH

- Assume there exists Strong Twin DH adversary B
- Construct DH adversary A:

```
Input: (X, Y)
Idea: X' := g^r X^s \quad (= g^{x'}, x' = r + xs)
Run strong 2DH adversary on (X, X', Y)
B outputs (Z, Z') and A returns Z.
```

How to simulate Strong Twin DH adversary's oracle?

$$2DHP(X, X', \cdot, \cdot, \cdot)$$

A doesn't know x, x'!

Tool: Trapdoor Test

Correct answer:

2DHP(X, X', Y, Z, Z') = 1 iff "2DH(X, X', Y) = (Z, Z')"
iff
$$X^y = Z$$
 and $X'^y = Z'$

Simulated answer:

$$SIM(X, X', Y, Z, Z') = 1$$
 iff $Y^r Z^s = Z'$

Claim: Conditioned on any fixed X':

Correct answer = Simulated answer

with prob. 1 - 1/|G| (over r, s).

(Proof is simple case analysis)

DH ⇒ Strong 2DH

 If all oracle queries answered correctly, then simulation of Strong 2DH problem is perfect.

B solves Strong 2DH ⇒

A solves DH w.p. 1 - (#queries)/|G|

 Reduction is tight: reductions to Strong 2DH imply reductions to DH with similar tightness.

Application 1: Twin ElGamal

```
pk = (X, X') = (g^{x}, g^{x'})
Pick random y
Y = g^{y}, K = H(X^{y}, X'^{y})
c = Enc_{K}(m)
(Y, c)
```

CCA secure if

- 1. H modeled as random oracle
- 2. (Enc,Dec) is CCA secure
- 3. The DH assumption holds

$$K = H(Y^{x}, Y^{x'})$$

 $m = Dec_{K}(c)$

Twin ElGamal v. Other Schemes

Pros:

- 1. Security based on DH, not Strong DH.
- 2. Short ciphertexts one group element of overhead when (Enc,Dec) is length-preserving.
- 3. Analysis is simple essentially like Hashed ElGamal, except using Strong Twin DH instead of Strong DH.

Cons:

- 1. Slower encryption (decryption can be optimized though).
- 2. Larger keys.

Non-Interactive Key Exchange

- All public keys stored in a directory symmetric keys computed offline
- Security: symmetric keys look random to adversary who inserts "rogue keys" into directory.

Non-Interactive Key Exchange

Security of DH protocol:

Secure against active adversaries in random oracle model if the **Strong** DH assumption holds.

$$sk = X_A$$
 $X_A = g^{X_A}$

$$K_{AB} = H(A,B,X_BX_A)$$

Directory

$$sk = x_B$$

$$X_B = g^{X_B}$$

$$K_{AB} = H(A, B, X_A^{X_B})$$

Application 2: Twin DH Key Exchange

Security of Twin DH protocol:

Secure against active adversaries in random oracle model if the DH assumption holds.

Application 3: Twin Cramer-Shoup

We give a new efficient CCA-secure public-key encryption scheme without random oracles.

- Security based on Hashed DDH assumption, which is generally weaker than DDH.
 - Reduce to Strong Twin Hashed-DDH assumption, i.e. Hashed DDH with an oracle.
- Simple analysis resembles some IBE proofs
- Variant gives security from DH assumption (not DDH!), but is less efficient and has a loose reduction.
- Similar unpublished schemes due to [Waters] and [Hanaoka, Kurosawa]

Other applications

- 1. Identity Based Encryption
 - Twin Boneh-Franklin/Sakai-Kasahara: Short ciphertexts and tighter reduction, but less efficient.
- 2. Simple technique for securing Password Authenticated Key Exchange against server compromise.
- 3. Analysis of Shoup's Diffie-Hellman "self corrector".

Conclusion

- General technique: Twin Diffie-Hellman and Trapdoor Test
 - Interactive assumptions that are useful and no stronger than basic DH-type assumptions
- Applications
 - 1. ElGamal encryption
 - 2. CCA encryption without random oracles
 - 3. Non-interactive key exchange
 - 4. PAKE
 - 5. IBE
 - 6. More... see full version on eprint.

Thank you!