
Isolated PoK and Isolated ZK

Ivan Damgård, Jesper Buus Nielsen
and Daniel Wichs

Proofs of Knowledge (Review)

Language L in NP. Instance x. Witness w.

Prover
(x,w)

Verifier
x

• Completeness: If the Prover, Verifier are both honest then the

Verifier outputs “Accept” W.O.P

Accept/
Reject

Zero Knowledge (Review)

Language L in NP. Instance x. Witness w.

Verifier
x

Simulator ensures that verifier could

have produced entire conversation

on its own.

Prover
(x,w)

Verifier

did not

learn

anything

new.

¼

Simulator
x

Extractor recovers w

from the prover.

Knowledge Soundnes (Review)

Language L in NP. Instance x. Witness w.

Prover Verifier
x

Extractor

If

“Accept”,

prover

knows w.

Environment

(x,w)

Prover
(?)

Isolation?

Prover
(x,w)

Verifier
(x)

• Standard definitions/constructions assume isolation.

• Prover can run a man-in-the-middle attack between the “friend” and the

verifier.

• No non-trivial protocol can guarantee that the prover knows w.

• Similar setting considered by Universal Composability.

Friend

(x,w)

What can be done without full isolation?

Verifier
(x)

• Setup assumptions (CRS, KRK,…) can be used to get UC security.
• This Talk: Assume prover is l-isolated during the proof.

• Necessary condition: C>l.

Prover

l bits C bits

Environment

(x,w)

Definitions and goals:

Verifier
(x)

• An l-Isolated PoK (l-IPoK) is a protocol where no l-isolated cheating

prover can produce successful proof without knowing the witness.
• Goal: Construct an IPoK compiler. For any l, compile an l-IPoK.

• For now, assume that the verifier is fully isolated.

Prover

l bits C bits

Environment

(x,w)

Why Study Partial Isolation?

 In certain settings it is reasonable to assume
that Prover has more bandwidth with Verifier
than with other parties.

 Prover and Verifier are in same room with a high
bandwidth channel between them but the prover
has only low-bandwidth channels to the outside
world.

 Prover is implemented on a tamper-proof
hardware token. Proposed by [Katz07] to solve
general UC-MPC, but token needed to be
completely isolated.

Presentation Road-Map

 Background, Motivation, Definition

 A simple construction of an l-IPoK protocol with a large
communication/round complexity.

 Lower bound on # of rounds in Black Box extractable l-IPoK.

 A construction of an l-IPoK protocol with optimal
communication complexity.

 A non-black-box construction in the RO model with optimal
communication/round complexity.

 Zero Knowledge when the Verifier is only partially Isolated

Review: §-Protocols

 Assume L 2 NP and § is a §-protocol for L.

 Special Knowledge Soundness
 Can recover w from any two accepting conversations

(a,c,z) and (a,c’,z’) with c  c’.

 Honest Verifier Zero Knowledge
 Implies Zero Knowledge when challenges are only 1 bit.

Prover (x, w) Verifier (x)
a

c

z

Compiling an l-IPoK from a

§-Protocol

 Theorem: Repeating § with 1 bit challenges (l+·) times
sequentially results in an l-IPoK with security parameter ·.

 Intuition: The prover cannot communicate even 1 bit on at least
· rounds and hence must know the witness!

Prover (x, w) Verifier (x)
a1

c1

z1

an

cn

zn

…..

…..

Parameters

O(l + ·) Round Complexity

O((l + ·)|§|) Communication Complexity C

O(|§|) Overhead = C/l. Assume l is large.

Presentation Road-Map

 Background, Motivation, Definition

 A simple construction of an l-IPoK protocol with a large
communication/round complexity.

 Lower bound on # of rounds in Black Box extractable l-IPoK.

 A construction of an l-IPoK protocol with optimal
communication complexity.

 A non-black-box construction in the RO model with optimal
communication/round complexity.

 Zero Knowledge when the Verifier is only partially Isolated

Round Complexity of BB
extractable l-IPoK

Prover
(x,w,f1,f2)

Verifier
(x)

Environment
(f2)

 Let f1, f2 be PRFs.

 The prover follows

the protocol

honestly.

 “Checks in” with

the Environment

before producing

any output.

 Rewinding requires

finding a collission

on f1 or guessing f2
at a new input!

¾ = f1(view)

! = f2(¾)
Update view
¾ = f1(view)

Update view
¾ = f1(view)

Update view
¾ = f1(view)

! = f2(¾)

! = f2(¾)

! = f2(¾)

If there are ½ rounds of communication then
l/½ = O(log(·))

) The number of rounds grows linearly with l.

Presentation Road-Map

 Background, Motivation, Definition

 A simple construction of an l-IPoK protocol with a large
communication/round complexity.

 Number of rounds in BB extractable l-IPoK is linear in l.

 A construction of an l-IPoK protocol with optimal
communication complexity.

 A non-black-box construction in the RO model with optimal
communication/round complexity.

 Zero Knowledge when the Verifier is only partially Isolated

Reducing the Communication

 Task: Design an l-IPoK where the communication

complexity and round complexity are both O(l).

 We need lots of short rounds.

 Idea: Use a ramp secret sharing scheme to split w

into small parts. Have lots of rounds where verifier get

a small share of w.

 Make sure honest verifier does not break privacy of w.

 Extractor can recover enough shares to recover w.

Efficient Protocol

Prover (x,w)
Verifier (x)

a Ã (random first message of §)
z0, z1 Ã responses to c=0,1

(s0[0],...,s0[N])Ã SS(z
0
;r0)

(s1[0],...,s
1
[N])Ã SS(z1;r1)

C0 Ã commit(z0||r0)
C1 Ã commit(z1||r1) a, C0,C1

e 2{0,1,?}

} Repeat
i=1,…,NSe[i]/?

b 2 {0,1}

decommit(Cb)

Verify: (a,b,zb)
is accepting for §

Collected shares Sb[i]
match the
decommitment.

?/ /

Choose ? so that

the probability of

getting too many

yellow/blue shares

to break privacy is

negligible.

This is a single epoch with N =O(l/·) rounds.

Protocol consists of M=O(·) epochs.

/

If Verifier is

about to break

the privacy of

the yellow/blue

sharing –

prover quits.

Happens w/

negligible

probability

when verifier is

honest.

Efficient Protocol

Prover (x,w)
Verifier (x)

a Ã (random first message of §)
z0, z1 Ã responses to c=0,1

(s0[0],...,s0[N])Ã SS(z
0
;r0)

(s1[0],...,s
1
[N])Ã SS(z1;r1)

C0 Ã commit(z0||r0)
C1 Ã commit(z1||r1)

a, C0,C1

e 2{0,1,?}

} Repeat
i=1,…,N

b 2 {0,1} Verify: (a,b,zb)
is accepting for §

Collected shares Sb[i]
match the
decommitment.

/

Extractor rewinds to

each round in each

epoch and tries the

“other” challenge.

• If Prover communicates,

that share is lost.

• Share might also be

incorrect.

• Thrm: On at least one

epoch, extractor can

recover other correct

response and hence w.

This is a single epoch with N =O(l/·) rounds.

Protocol consists of M=O(·) epochs.

?/ /

Parameters

O(l) Round Complexity

O(l) Communication Complexity C

O(1) Overhead = C/l.

Assume l = (·|§|)

Presentation Road-Map

 Background, Motivation, Definition

 A simple construction of an l-IPoK protocol with a large
communication/round complexity.

 Number of rounds in BB extractable l-IPoK is linear in l.

 A construction of an l-IPoK protocol with optimal
communication complexity.

 A non-black-box construction in the RO model with optimal
communication/round complexity.

 Zero Knowledge when the Verifier is only partially Isolated

Random Oracle Protocol

Prover (x,w) Verifier (x)

Random Oracle
H: {0,1}* ! {0,1}·

rÃ random string of length l + ·

For i=1,…,·:
aiÃ (first message of §)

zi
0, zi

1 responses
¾i

0 = H(zi
0, r, ri

0)
¾i

1 = H(zi
1, r, ri

1)
{ai, ¾i

0, ¾i
1 }i=1,…,·

c1, c2, …, c· ci Ã {0,1}

{ri
(ci), zi

(ci) }i=1,…,·

Use RO as
commitment scheme
• Valid commitments
can only be computed
by the prover alone.
• Extractable by
looking at RO queries
(non-BB).

• Prover only wins if
he queries the RO
only for the challenge
asked by verifier.
) 1/2·

Presentation Road-Map

 Background, Motivation, Definition

 A simple construction of an l-IPoK protocol with a large
communication/round complexity.

 Number of rounds in BB extractable l-IPoK is linear in l.

 A construction of an l-IPoK protocol with optimal
communication complexity.

 A non-black-box construction in the RO model with optimal
communication/round complexity.

 Zero Knowledge when the Verifier is only partially Isolated

l-Isolated Zero Knowledge (l-IZK)

Environment cannot distinguish left from right.

l bits

Environment

(x,w)

Verifier
(x)

Prover
(x,w)

Simulator
x

l bits

Just like Knowledge Soundness, l-IZK is impossible if C<l.

IZK + IPoK from WI IPoK

 Use FLS paradigm to go from WI to IZK

 Use your favorite WI IPoK, Perfectly Binding Commitments

Prover (x,w) Verifier (x)

C0,C1 C0 Ã commit(m0;r0)

C1 Ã commit(m1;r1)

WI IPoK for one of
(m0||r0) or (m1||r1)

WI IPoK for one of
(m0||r0) or (m1||r1)
or w

Applications of IPoK and IZK

 Can prevent man-in-the-middle attacks on
identification schemes when the prover is partially
isolated (use a WI IPoK).

 UC secure MPC under a “cave” assumption. We can
implement ideal ZK PoK in such a cave and so can
do arbitrary UC-MPC using [CLOS02].

 Would like to do UC-MPC when only one party is
partially isolated at a given time. This is needed for
tamper-proof hardware. Can be accomplished using
a WI-IPoK (see ePrint 2007/332).

Thank You!

QUESTIONS?

