Detection of Algebraic Manipulation

with Applications to
Robust Secret Sharing
and
Fuzzy Extractors

Ronald Cramer, Yevgeniy Dodis,
Serge Fehr, Carles Padro,

Daniel Wichs

Abstract Storage Device X(G)

1 Properties of J(Q):
1. 2)(G) provides privacy.
2. 2(G) allows

T~ \ 4
€ .2
~

Storage X(G)

Abstract Storage Device X(G)

Q: Why study devices with these properties?

A: They appear implicitly in crypto applications:
— Secret Sharing
— Fuzzy Extractors

Problem: Because of algebraic manipulation, the
above primitives are vulnerable to certain
adversarial attacks.

Task A general method that helps us add
' to secret sharing and fuzzy

extractors.

Application: Secret Sharing

® (@ Sl
5

¢ @ T
D ﬁzg
LY s = “Cut H@G ere 1. S3
v &
Qualified sets: can recover g.g

Unqualified sets: learn nothing about g.

Application: Secret Sharing

S
1 Unqualified Set

Application: Secret Sharing

%)

Robust Secret Sharing: An adversary who
corrupts an unqualified set of players cannot cause
the recovery of = # s.

Linear Secret Sharing

Assume Secret Sharing is Linear (i.e.)
:ReC(Sl1 155156)
= Rec(S,,S,.,S5,.,5,,5,,5) + Rec(0, ., ~, 1,0, 0)
— g -+

So «2° is limited to algebraic manipulation!

Linear Secret Sharing

o
=4
S

data on X(G SSGtha.t P
algebraic ulation e
can be det . Qw

S5 ~_

" e . - S
SN k) 3
6 @y
eSS, -

* Privacy of SS = Privacy or‘ -
» Linearity of SS = Algebraic ulation. €

Need: A way to store

\'@" A

Algebraic Manipulation Detection
(AMD) Codes

1 An AMD Code consists of
— A probabillistic encoding function £: S — G

— A decoding function D: G — S U { L}
1 For any s, D(E(s)) = s
1 Foranyse S, Ae G
PrID(E(s) + A) ¢ {s,1}]< €

1 Robust Secret Sharing: Share E(s).

Robust Linear Secret Sharing

é

Recall: @
=Rec(S,, S.,9¢) =gt
=E(s)+
J
D(7) = D(E(s) + 1) € {s, L}

Construction of AMD Code

E(s) = (s, k, k42 + 3] s,ki)
where k Is random.

Parameters and Optimality

1 To get robustness security ¢ = 2-%, encoding of s
adds overhead 2« + O(log(|s])) bits.

1 Almost matches lower bound of 2 bits.

1 Previous constructions of Robust SS implicitly
defined AMD codes with overhead linear in |s|.

1 To share a 1MB message with robustness e = 2128

— Previous construction had an overhead of 2 MB.
— We get an overhead of less than 300 bits.

Application #2

Fuzzy EXxtractors

Robust Fuzzy Extractors
Secret w: Secret w':

b)
> (11 7
“secret_Password” w~w ecret-password

Secret w

—.iGen

Robust Fuzzy Extractors

Secret w’

Qg

(Bob in the future)

Rep

— R/

Does not allow interaction!

The Price of Robustness

1 Non-robust fuzzy extractors with “good” parameters were
constructed for several natural metrics.

1 Until now, to get robustness, you had to choose:
— Interaction + computational assumptions + CRS
— Random Oracle model
— Entropy rate of w more than %2 + extract short keys

1 Would like to get a non-interactive protocol that works for all
entropy rates and does not require random oracles.

= |.T. robustness requires that the entropy rate of w is more
than 7%z, even in the non-fuzzy case w=w'.

— The price of robustness, , IS HIGH!

&1 This talk: Robustness is essentially FREE in the CRS model!

Randomness Extractors

Secret: w

ExXt — R

Public Seed: i

Can extract almost all entropy In w.

The extracted string Is random, even given
The public seed

(2,R) =~ (2, U)

Non-fuzzy Key Exchange

Choose 2

é&

R=Ext(w,z) R=EXxt(w,?)

Non-fuzzy Key Exchange

CRS: Extractor seed 2

e 8,

R=Ext(w,z) R=EXxt(w,?)

Trivial! No communication necessary!
But does not generalize to fuzzy case...

Correcting Errors using a Secure
Sketch

s

SS(w) Is very short and does not leak out much
iInfo about w.

Let’s try to only put z In

the CRS and
“authenticate” S.

Robust Fuzzy Extractor?
CRS: Extractor seed

‘é

Gen():

to a MAC to

W — Ext — g Use k as a key g,]
S

‘“authenticate” R

o Y Ext - R

O' ”nO”

Robust Fuzzy Extractor?

| CRS: Extractor seed
"6 o}

Gen(): " Rep(w’,P):

_ R, w’
e B Rec o
S

”nO”

Robust Fuzzy Extractor?

| CRS: Extractor seed
"6 o}

Gen(): " Rep(w’,P):
YT Ext — kR » mlj
S E Ext *R

”nO”

Might not be secure!
But let's see - how insecure Is 1t?
Assume that the secure sketch
and extractor are linear...

Robust Fuzzy Extractor?

CRS: Extractor seed
w

Gen():

w —

R,
EXt — 1 Rec
m 5
L 1AC i B \er Meted
no

Robust Fuzzy Extractor?

CRS: Extractor seed

w

Gen(): ; Rep(w

Y Ext | kR’ Si 1
S Dﬁ Ext

—>

”nO”

Robust Fuzzy Extractor?

CRS: Extractor seed
w

Gen():

- R, w’
YT Ext L S+ m “
S

Robust Fuzzy Extractor?

» Can think of MAC key k as stored
on a device M(G).
» Can’t encode k using an AMD code.

* Need a new MAC primitive.

w—NE . g e Rec g
w -l S | Ext r

—>

<>
(&) "no”

MAC with Key Manipulation Security
(KMS-MAC)

1 A (one-time) MAC that is secure even If the
key used for verification Is stored on X(G).

1 Given o = MAC,(s) can’'t come up with
and o = MAC,, (5).

1 Systematic AMD code = KMS-MAC.:
— E(s) = (s, k, h(s,k))
—MAC ., &) (8) = h(s,k)+k;

Use a KMS-MAC!
CRS: Extractor seed

5
Ly B Ver plthed

(&) "no”

Parameters

1 Because our KMS-MAC has short keys,
we loose very little randomness to achieve
robustness!

1 Inthe CRS model, robustness comes
essentially for FREE.

— At least for “linear” fuzzy extractors

Review

Devices X(G) appear naturally in crypto

applications.

— Linear Secret Sharing.
— Fuzzy Extractors in CRS model.

Use AMD codes or KMS-MACSs to get
robustness.

THANK YOU!

Questions?

