
Detection of Algebraic Manipulation
with Applications to

Robust Secret Sharing

and

Fuzzy Extractors

Ronald Cramer, Yevgeniy Dodis,
Serge Fehr, Carles Padro,

Daniel Wichs

Properties of §(G):

1. §(G) provides privacy.

2. §(G) allows algebraic manipulation.

2G+

Storage §(G)

What’s
g?

¢2G

Abstract Storage Device §(G)

g

Abstract Storage Device §(G)

Q: Why study devices with these properties?

A: They appear implicitly in crypto applications:
– Secret Sharing

– Fuzzy Extractors

Problem: Because of algebraic manipulation, the
above primitives are vulnerable to certain active
adversarial attacks.

Task: A general method that helps us add
“robustness” to secret sharing and fuzzy
extractors.

s = “Cut the blue wire!”

Application: Secret Sharing

g2G

S1

S2

S3

S4

S5

S6

Qualified sets: can recover g.

Unqualified sets: learn nothing about g.

Application: Secret Sharing

S1

S2

S3

S4

S5

S6

S’4

S’3

S’2

What’s
g?

Unqualified Set

g ’= Rec(S1,S2’ ,S3’ ,S4’,S5,S6) s’ = “Cut the red wire!”

Application: Secret Sharing

Robust Secret Sharing: An adversary who

corrupts an unqualified set of players cannot cause
the recovery of s’  s.

g’ =Rec()

= Rec(S1,S2 ,S3 ,S4,S5,S6) + Rec(0, ¢2, ¢3, ¢4, 0, 0)

= g + ¢

Linear Secret Sharing

S1,S’2,S’3,S’4,S5,S6

So is limited to algebraic manipulation!

.

Assume Secret Sharing is Linear (i.e. [Sha79,KW93,…])

Linear Secret Sharing

S1

S2

S3

S4

S5

S6

§(G)

• Privacy of SS) Privacy of §(G).

• Linearity of SS) Algebraic Manipulation.

Need: A way to store
data on §(G) so that

algebraic manipulation

can be detected.

Algebraic Manipulation Detection

(AMD) Codes

An AMD Code consists of

– A probabilistic encoding function E: S ! G

– A decoding function D: G ! S [{?}

For any s, D(E(s)) = s

For any s2 S , ¢ 2 G

Pr[D(E(s) + ¢)  {s,?}]· ²

Robust Secret Sharing: Share E(s).

g’ =Rec(S1,S’2,S’3,S’4,S5,S6) = g + ¢

=E(s)+¢



D(g’) = D(E(s) + ¢) 2 {s,?}

Robust Linear Secret Sharing

Recall:

Construction of AMD Code

E(s) = (s, k, kd+2 + § sik
i)

where k is random.
i=0

d

Parameters and Optimality

To get robustness security ² = 2- ·, encoding of s
adds overhead 2· + O(log(|s|)) bits.

Almost matches lower bound of 2· bits.

Previous constructions of Robust SS implicitly
defined AMD codes with overhead linear in |s|.
[CPS02, OK96, PSV99]

To share a 1MB message with robustness ² = 2-128

– Previous construction had an overhead of 2 MB.

– We get an overhead of less than 300 bits.

Application #2

Fuzzy Extractors

Fuzzy Extractors

Secret w:
“secret_Password”

Secret w’:
“Secret~password”w ¼ w’

w Gen
P

R

Robust

P
Repw’ R

Fuzzy Extractor:
R looks uniformly

random even after I see

P.

P *
R *

Robust fuzzy extractor:
I will detect P *  P.

?

Robust Fuzzy Extractors

Secret w Secret w’

w Gen
P

R
Repw’

P *
R /?

(Bob in the future)

Does not allow interaction!

The Price of Robustness
Non-robust fuzzy extractors with “good” parameters were
constructed for several natural metrics. [DORS04]

Until now, to get robustness, you had to choose:
– Interaction + computational assumptions + CRS [BDKOS05]

– Random Oracle model [BDKOS05]

– Entropy rate of w more than ½ + extract short keys [DKRS06]

Would like to get a non-interactive protocol that works for all
entropy rates and does not require random oracles.

I.T. robustness requires that the entropy rate of w is more
than ½, even in the non-fuzzy case w=w’.
– The price of robustness, w.o. RO/CRS/assumptions, is HIGH! [DS02]

This talk: Robustness is essentially FREE in the CRS model!

Randomness Extractors

Ext

Secret: w

Public Seed: i

R

Can extract almost all entropy in w.

The extracted string is random, even given

The public seed
(i,R) ¼ (i, U)

Non-fuzzy Key Exchange

R=Ext(w,i) R=Ext(w,i)

i

Choose i
Not robust!

Non-fuzzy Key Exchange
CRS: Extractor seed i

R=Ext(w,i) R=Ext(w,i)

Trivial! No communication necessary!

But does not generalize to fuzzy case…

Robust!

Correcting Errors using a Secure

Sketch

SSw S

Rec
w’

wS

SS(w) is very short and does not leak out much

info about w.

Fuzzy Extractor

w

P = (i,S)

RExt

SS

i

S

Gen() : Rep(w’,P) :

w

w w’

w’
RecS

w

w
RExti

Cannot put in CRS
since S is user-

specific.

Let’s try to only put i in

the CRS and
“authenticate” S.

Robust Fuzzy Extractor?

w

P = (S,¾)

R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
RecS

w

w
Exti

CRS: Extractor seed i

MAC
k ¾
S VerS

¾

R

k

“yes”,

”no”

k

R

R

Split extracted

randomness

Into 2 parts.

Use k as a key

to a MAC to

“authenticate”
S

Robust Fuzzy Extractor?

w

P * = (S *, ¾*)

R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
RecS *

w

w
Exti

CRS: Extractor seed i

MAC
k ¾
S Ver

¾*

R

k

“yes”,

”no”

k
S *

Robust Fuzzy Extractor?

w

P * = (S *, ¾*)

R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
RecS *

w*

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver

¾*

R

k

“yes”,

”no”

k
S *

w*

Robust Fuzzy Extractor?

w

P * = (S *, ¾*)

R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
RecS *

w*

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver

¾*

R

k*

“yes”,

”no”

k*
S *

w*

Might not be secure!

But let’s see - how insecure is it?

Assume that the secure sketch

and extractor are linear...

Robust Fuzzy Extractor?

w R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
Rec

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver “yes”,

”no”

S+¢S

w*

w* R

k*

k*

¾*
S *

P * = (S *, ¾*)

w+¢w

w+¢w

Robust Fuzzy Extractor?

w R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
RecS+¢S

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver “yes”,

”no”

R

k*

k*

¾*
S *

P * = (S *, ¾*)

k+¢k

R
k +¢k

w+¢w

Robust Fuzzy Extractor?

w R,

kExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
Rec

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver “yes”,

”no”

w+¢w

S+¢S

P * = (S *, ¾*)

¾*
S *

k

R

Robust Fuzzy Extractor?

w

P = (S,¾)

RExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
Rec

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver “yes”,

”no”§(G)

• Can think of MAC key k as stored

on a device §(G).

• Can’t encode k using an AMD code.

• Need a new MAC primitive.

S *
w*

¾*
S *

w*

MAC with Key Manipulation Security

(KMS-MAC)

A (one-time) MAC that is secure even if the
key used for verification is stored on §(G).

Given ¾ = MACk(s) can’t come up with ¢
and ¾’ = MACk+¢(s’).

Systematic AMD code) KMS-MAC:

– E(s) = (s, k, h(s,k))

– MAC (k1,k2) (s) = h(s,k1)+k2

k

R

Robust Fuzzy Extractor?

w
RExt

SS

i

S

Gen(): Rep(w’,P):

w

w w’

w’
Rec

Exti

CRS: Extractor seed i

MAC
k ¾
S Ver “yes”,

”no”§(G)

S *
w*

¾*
S *

w*

Use a KMS-MAC!

P * = (S *, ¾*)

Parameters

Because our KMS-MAC has short keys,

we loose very little randomness to achieve

robustness!

In the CRS model, robustness comes

essentially for FREE.

– At least for “linear” fuzzy extractors

Review

Devices §(G) appear naturally in crypto

applications.
– Linear Secret Sharing.

– Fuzzy Extractors in CRS model.

Use AMD codes or KMS-MACs to get

robustness.

THANK YOU!

Questions?

