Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors

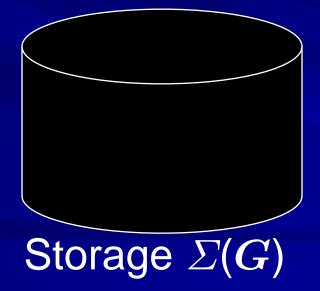
> Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles Padro, Daniel Wichs

Abstract Storage Device $\Sigma(G)$

What's

Properties of $\Sigma(G)$:

- 1. $\Sigma(G)$ provides **privacy**.
- 2. $\Sigma(G)$ allows algebraic manipulation.

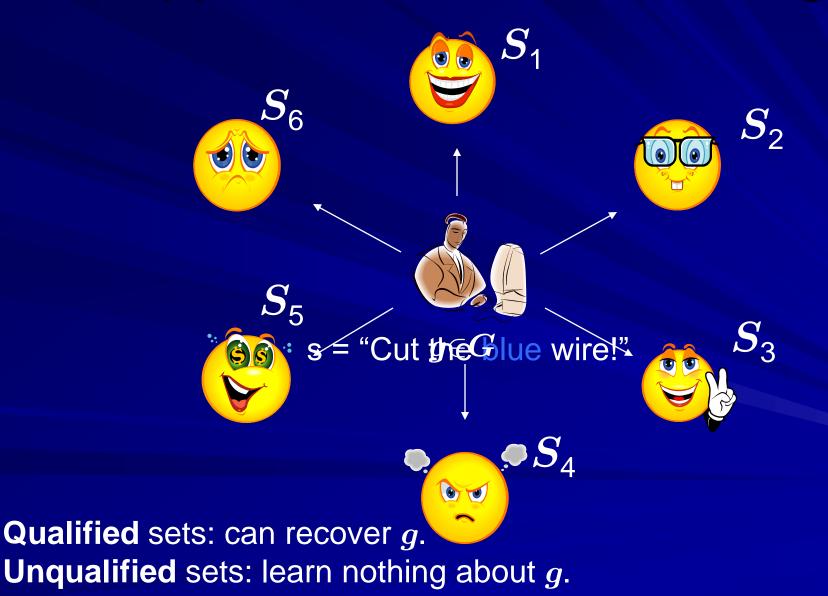


Abstract Storage Device $\Sigma(G)$

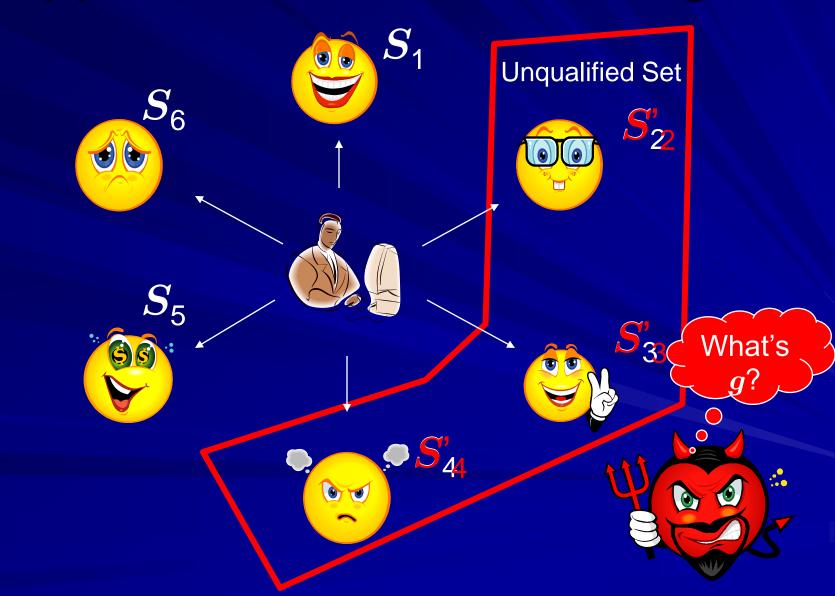
Q: Why study devices with these properties?

- A: They appear implicitly in crypto applications:
 - Secret Sharing
 - Fuzzy Extractors
- Problem: Because of algebraic manipulation, the above primitives are vulnerable to certain active adversarial attacks.
- Task: A general method that helps us add "robustness" to secret sharing and fuzzy extractors.

Application: Secret Sharing



Application: Secret Sharing



Application: Secret Sharing

Robust Secret Sharing: An adversary who corrupts an <u>unqualified</u> set of players cannot cause the recovery of $s' \neq s$.

Linear Secret Sharing

Assume Secret Sharing is Linear (i.e. [Sha79,KW93,...])

$g' = \operatorname{Rec}(S_1, S_2, S_3, S_4, S_5, S_6)$ = $\operatorname{Rec}(S_1, S_2, S_3, S_4, S_5, S_6) + \operatorname{Rec}(0, \Delta_2, \Delta_3, \Delta_4, 0, 0)$ = $g + \Delta$

So is limited to algebraic manipulation!

Linear Secret Sharing

 S_1

 S_{2}

S₃

Need: A way to store data on $\Sigma(G) s S_6$ that algebraic manupulation can be detected.

 $\Sigma(G)$

 $\bullet S_{A}$

• Privacy of SS \Rightarrow Privacy of \mathfrak{SG}

 S_5

• Linearity of SS \Rightarrow Algebraic Manipulation.

Algebraic Manipulation Detection (AMD) Codes An AMD Code consists of – A probabilistic encoding function $E: S \rightarrow G$ - A decoding function $D: \mathbf{G} \to \mathbf{S} \cup \{\bot\}$ For any s, D(E(s)) = sFor any $oldsymbol{s} \in oldsymbol{S}$, $oldsymbol{\Delta} \in oldsymbol{G}$ $\Pr[D(E(s) + \Delta) \notin \{s, \bot\}] \leq \epsilon$

Robust Secret Sharing: Share E(s).

Robust Linear Secret Sharing

Recall:

$g' = \operatorname{Rec}(S_1, S_2, S_3, S_4, S_5, S_6) = g + \Delta$ $= E(s) + \Delta$

 $D(q') = D(E(s) + \Delta) \in \{s, \bot\}$

Construction of AMD Code

$E(s) = (s, k, k^{d+2} + \sum_{i=0}^{d} s_i k^i)$ where k is random.

Parameters and Optimality

To get robustness security ε = 2^{-κ}, encoding of s adds overhead 2κ + O(log(|s|)) bits.

Almost matches lower bound of 2κ bits.

Previous constructions of Robust SS implicitly defined AMD codes with overhead linear in [s]. [CPS02, OK96, PSV99]

To share a 1MB message with robustness $\epsilon = 2^{-128}$

- Previous construction had an overhead of 2 MB.
- We get an overhead of less than 300 bits.

Fuzzy Extractors

Robust Fuzzy Extractors

Secret w: "secret_Password"

 $m{w}pproxm{w}'$

Secret w': "Secret-password"

Rep

 \overline{w}

 \mathbb{R}^*

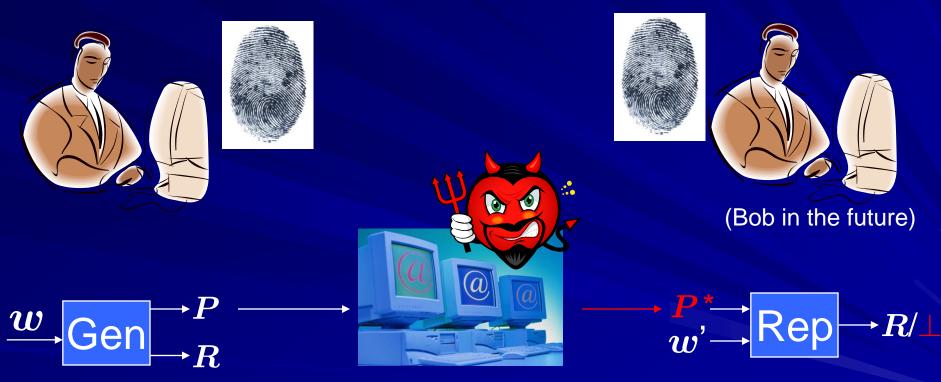
<u>Robust</u> fuzzy extractor: I will detect $P^* \neq P$.

Γ.

Robust Fuzzy Extractors

Secret w

Secret w'



Does not allow interaction!

The Price of Robustness

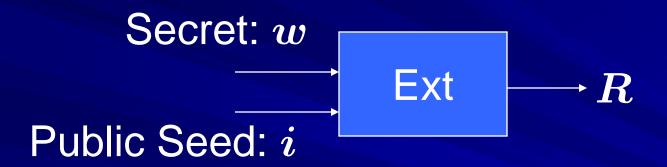
- Non-robust fuzzy extractors with "good" parameters were constructed for several natural metrics. [DORS04]
- Until now, to get robustness, you had to choose:
 - Interaction + computational assumptions + CRS [вокозоз]
 - Random Oracle model [вокозо5]
 - Entropy rate of w more than $\frac{1}{2}$ + extract short keys [DKRS06]
- Would like to get a non-interactive protocol that works for all entropy rates and does not require random oracles.

I.T. robustness requires that the entropy rate of w is more than $\frac{1}{2}$, even in the non-fuzzy case w=w'.

The price of robustness, w.o. RO/CRS/assumptions, is HIGH! [DS02]

This talk: Robustness is essentially **FREE** in the CRS model!

Randomness Extractors



Can extract almost all entropy in w. The extracted string is random, even given The public seed $(i,R) \approx (i,U)$

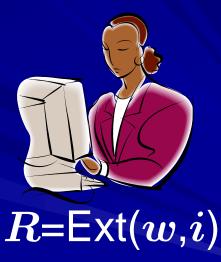
Non-fuzzy Key Exchange

Not robust!

2

Choose *i*

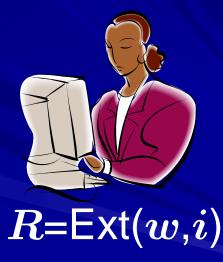
 $R = \mathsf{Ext}(w,i)$



Non-fuzzy Key Exchange CRS: Extractor seed *i*

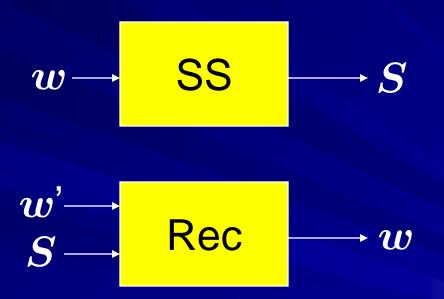
Robust!

 $R = \mathsf{Ext}(w, i)$

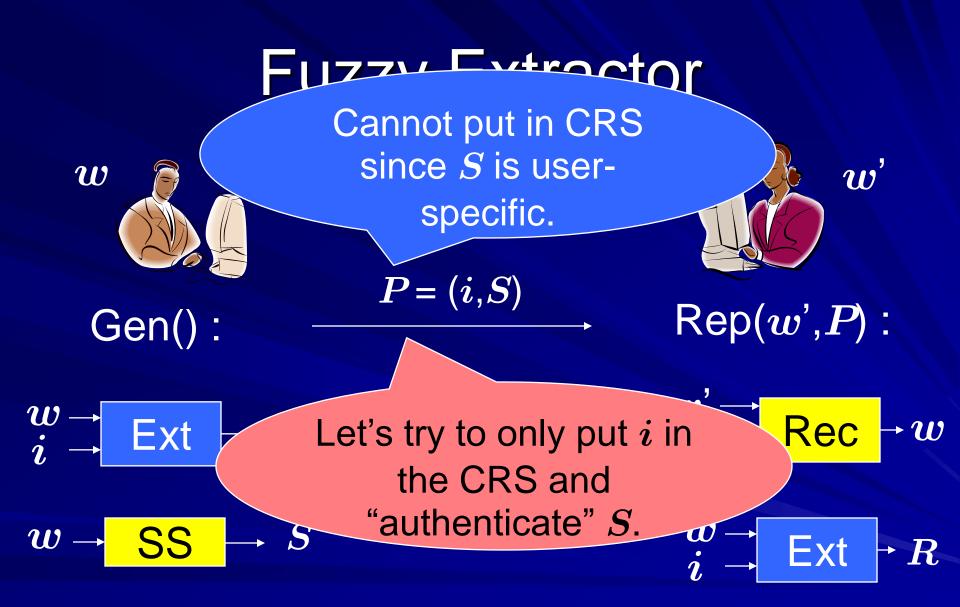


Trivial! No communication necessary! But does not generalize to fuzzy case...

Correcting Errors using a Secure Sketch



SS(w) is very short and does not leak out much info about w.



Robust Fuzzy Extractor? CRS: Extractor seed *i* wW $P = (S, \sigma)$ $\operatorname{Rep}(w', P)$: Gen(): R, R, *→ w* Rec Use k as a key Ext to a MAC to "authenticate" \boldsymbol{S} SS ${R \over R}$ \boldsymbol{w} -Ext \boldsymbol{S}

Ver

$$\stackrel{k}{S} \rightrightarrows MAC \rightarrow \sigma$$

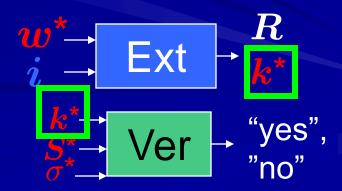
Robust Fuzzy Extractor? CRS: Extractor seed i w'W $= (S^*, \sigma^*)$ $\operatorname{Rep}(w', P)$: Gen(): $ightarrow egin{array}{c} R,\ ightarrow egin{array}{c} R,\ ightarrow egin{array}{c} k \end{array} ightarrow egin{array}{c} R,\ ightarrow egin{array}{c} R,$ *w*′ -Rec *→ w* $w \rightarrow Ext$ $oldsymbol{R}$ SS w \rightarrow $\rightarrow S$ Ext $s \equiv MAC$ σ Ver

Robust Fuzzy Extractor? CRS: Extractor seed i wW $= (S^*, \sigma^*)$ $\operatorname{Rep}(w', P)$: Gen(): $ightarrow egin{array}{c} R,\ ightarrow egin{array}{c} R,\ ightarrow egin{array}{c} k \end{array}$ *w*′ – Rec w - Ext SS $egin{array}{c} R \ k \end{array}$ w ightarrow $\rightarrow S$ Ext $s \equiv MAC$ σ Ver

Might not be secure! But let's see - how insecure is it? Assume that the secure sketch and extractor are linear...

$$\begin{array}{c} w \to & \mathbb{E} \\ i & \to \\ w \to & \mathbb{SS} \\ \end{array} \xrightarrow{} S \end{array} \xrightarrow{R}, \\ k \end{array}$$

$$\stackrel{k}{S} \rightrightarrows MAC \rightarrow o$$

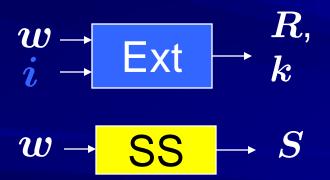


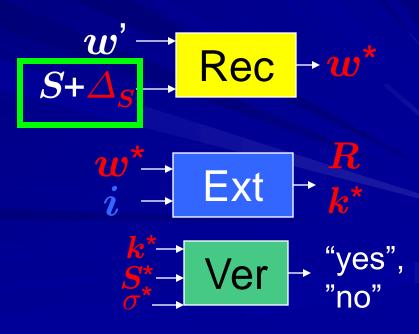
Robust Fuzzy Extractor? CRS: Extractor seed *i*

Gen():

 $= (S^*, \sigma^*)$

 $\mathsf{Rep}(w', \mathbf{P})$:



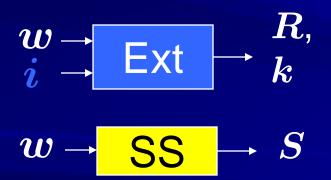


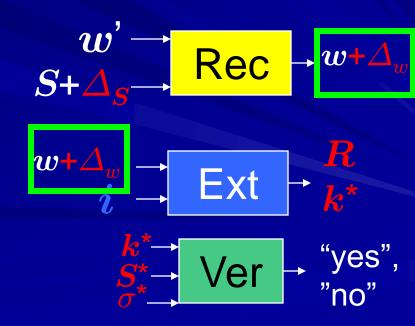
Robust Fuzzy Extractor? CRS: Extractor seed i

Gen():

$$P^{\star} = (S^{\star}, \sigma^{\star})$$

 $\operatorname{Rep}(w', P)$:





Robust Fuzzy Extractor? CRS: Extractor seed i

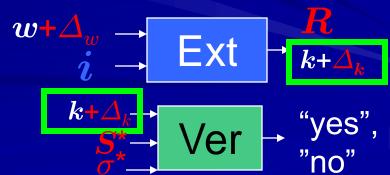
Gen():

 $\mathbf{P}^* = (\mathbf{S}^*, \, \sigma^*)$

w

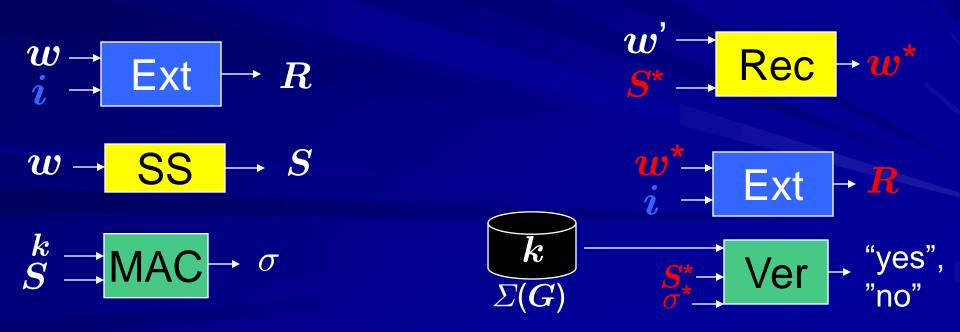


 $w' \rightarrow \mathsf{Rec} \rightarrow w + \Delta_w$ $S + \Delta_s \rightarrow \mathsf{Rec}$



Robust Fuzzy Extractor?

- Can think of MAC key k as stored on a device $\Sigma(G)$.
- Can't encode k using an AMD code.
- Need a new MAC primitive.

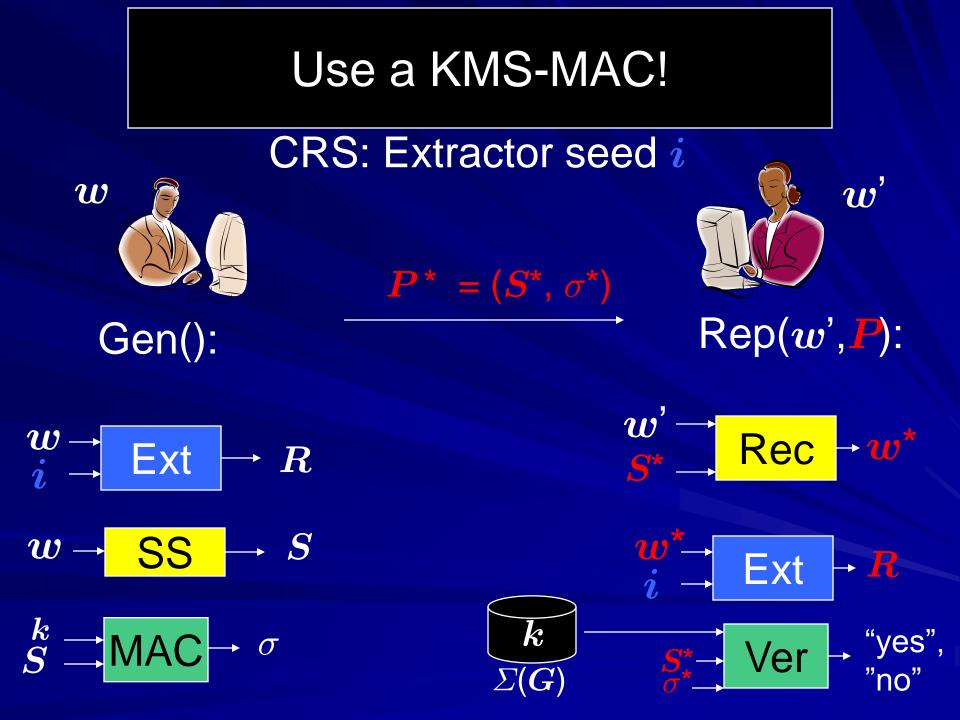


MAC with Key Manipulation Security (KMS-MAC)

A (one-time) MAC that is secure even if the key used for verification is stored on $\Sigma(G)$.

Given $\sigma = MAC_k(s)$ can't come up with Δ and $\sigma' = MAC_{k+\Delta}(s')$.

Systematic AMD code \Rightarrow KMS-MAC: -E(s) = (s, k, h(s,k)) $-MAC_{(k_1,k_2)}(s) = h(s,k_1)+k_2$



Parameters

Because our KMS-MAC has short keys, we loose very little randomness to achieve robustness!

In the CRS model, robustness comes essentially for FREE.

At least for "linear" fuzzy extractors

Devices $\Sigma(G)$ appear naturally in crypto applications.

- Linear Secret Sharing.
- Fuzzy Extractors in CRS model.

Use AMD codes or KMS-MACs to get robustness.

THANK YOU!

Questions?