Introduction 0000000000 New Attack

Extensions

conclusion

Second Preimage Attacks on Dithered Hash Functions

Elena Andreeva¹ Charles Bouillaguet² Pierre-Alain Fouque² Jonathan J. Hoch³ John Kelsey⁴ Adi Shamir^{2,3} Sebastien Zimmer²

¹K.U. Leuven, ESAT/COSIC, Leuven-Heverlee, Belgium

²École Normale Supérieure, Paris, France

³Weizmann Institute of Science, Rehovot, Israel

⁴NIST, Gaithersburg, MD, USA

EUROCRYPT 2008

Iterated Hash Functions	ntonolucio		
	New Attack 00000000	Extensions 00	conclusion

 $H: \left\{0,1\right\}^* \mapsto \left\{0,1\right\}^n$

Should behave "like a random oracle".

Hash Functions Cryptanalysis			
Iterated Hash Functions			
Introduction ●00000000	New Attack 00000000	Extensions 00	conclusion

 $H: \left\{0,1\right\}^* \mapsto \left\{0,1\right\}^n$

Should behave "like a random oracle".

Collision attack Find $M_1 \neq M_2$ s.t. $H(M_1) = H(M_2)$. Ideal security: $2^{n/2}$.

Second-preimage attack Given M_1 , find $M_2 \neq M_1$ s.t. $H(M_1) = H(M_2)$. Ideal security: 2^n .

Preimage attack Given y, find M s.t. H(M) = y. Ideal security: 2^n .

Hash Functions Cryptanalysis			
Iterated Hash Functions			
Introduction ●000000000	New Attack 00000000	Extensions 00	conclusion

 $H: \left\{0,1\right\}^* \mapsto \left\{0,1\right\}^n$

Should behave "like a random oracle".

Collision attack Find $M_1 \neq M_2$ s.t. $H(M_1) = H(M_2)$. Ideal security: $2^{n/2}$.

Second-preimage attack Given M_1 , find $M_2 \neq M_1$ s.t. $H(M_1) = H(M_2)$. Ideal security: 2^n .

Preimage attack Given y, find M s.t. H(M) = y. Ideal security: 2^n .

Introduction	New Attack	Extensions	conclusion
00000000	0000000	00	
Iterated Hash Functions			

The Merkle-Damgård Mode of Operation

Most hash functions are iterated hash functions :

- Split *M* into *m*-bit blocks : $M = m_0, m_1, \ldots, m_r$
- ▶ Pad the last block (include binary encoding of |*M*|)
- Iterate a compression function $f : \{0,1\}^{n+m} \rightarrow \{0,1\}^n$

Introduction 000000000	New Attack 00000000	Extensions 00	conclusion
Generic Attacks			
Generic Attacks			

A full hash function is made of

- A compression function
- A mode of operation (i.e., a way of using it)

In this talk

Attacks against the mode of operation

- ► Works for all *f* : generic attacks
- Model f as a Random Oracle
- Collisions on f cost 2^{n/2}

Introduction	New Attack 00000000	Extensions 00	conclusion
Generic Attacks			
Joux's Multicollision Towards the First Generic	[CRYPTO'04] Second Preimage Attack		

For the cost of k collisions, we can build a 2^k -multicollision

- At each step, find a colliding block pair starting from the last chaining value
- 2^k paths between IV and h_k

Works because of the iterated structure of H !

Introduction	New Attack	Extensions	conclusion
000000000			
Generic Attacks			

Kelsey & Schneier Second Preimage Attack [EUROCRYPT'05]

At step *i*, find a collision between a 1-block message and a $(2^i + 1)$ -block message

• Messages of sizes $[k + 1; 2^{k+1} - 2]$ that hash to h_k

 \Rightarrow expandable message

How to use this ?

Introduction	New Attack	Extensions	conclusion
000000000	0000000	00	
Generic Attacks			

Kelsey & Schneier Second Preimage Attack (Cont'd)

1 Generate an Expandable Message \mathcal{M} that hashes to $h_{\mathcal{M}}$

 \mathcal{M}

IV

Kelsey & Schneier Second Preimage Attack (Cont'd)

- 1 Generate an Expandable Message ${\mathcal M}$ that hashes to $h_{{\mathcal M}}$
- **2** Find a message block \mathbb{B} "connecting" $h_{\mathcal{M}}$ to M

Introduction	New Attack	Extensions	conclusion
000000000			
Generic Attacks			

Kelsey & Schneier Second Preimage Attack (Cont'd)

- **1** Generate an Expandable Message \mathcal{M} that hashes to $h_{\mathcal{M}}$
- **2** Find a message block \mathbb{B} "connecting" $h_{\mathcal{M}}$ to M
- **3** Using \mathcal{M} , build P of length i 1 that hashes to $h_{\mathcal{M}}$

- 2 Find a message block \mathbb{B} "connecting" $h_{\mathcal{M}}$ to M
- **3** Using \mathcal{M} , build P of length i 1 that hashes to $h_{\mathcal{M}}$
- 4 Assemble all pieces to form a second preimage M'

Introduction	New Attack	Extensions	conclusion
000000000			
Generic Attacks			

Kelsey & Schneier Second Preimage Attack (end)

Cost of the attack:

- \blacktriangleright Build Expandable Message ${\cal M}$
 - ► k collisions
 - $2^k \geq |M|$
 - Cost: $k \cdot 2^{n/2}$

• "Connect" $h_{\mathcal{M}}$ to target message (*i.e.*, find \mathbb{B}).

• Cost : $2^n / |M|$.

⇒ If
$$|M| = 2^k$$
, total cost : $k \cdot 2^{n/2} + 2^{n-k}$
► SHA-1 ($k = 55, n = 160$), total cost : 2^{106}

Introduction	New Attack	Extensions	conclusion
0000000000			
Generic Attacks			

Kelsey & Schneier Second Preimage Attack (end)

Cost of the attack:

- \blacktriangleright Build Expandable Message ${\cal M}$
 - k collisions
 - ▶ $2^k \ge |M|$
 - Cost: $k \cdot 2^{n/2}$

• "Connect" $h_{\mathcal{M}}$ to target message (*i.e.*, find \mathbb{B}).

• Cost : $2^n / |M|$.

⇒ If
$$|M| = 2^k$$
, total cost : $k \cdot 2^{n/2} + 2^{n-k}$
► SHA-1 ($k = 55, n = 160$), total cost : 2^{106}

Conclusion

There is a problem with the Merkle-Damgård mode of operation

Introduction ○○○○○○●○○	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Dithering			

Several new modes of operation recently suggested to replace MD.

- Some prevent the 2nd Preimage attack with dithering.
 - Perturb the hash process
 - new input from a fixed dithering sequence z.
- HAIFA : dithering with a 64-bit counter
- Rivest : dithering with 2-bit symbols (Proposed at the 1st NIST Hash Workshop)

Introduction ○○○○○○○○	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering P Description	roposal		

Dithering with a repetition-free sequence on 4 letters :

 $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$

no square in sequence

square : bana.na

Perturbs construction of the Expandable Message

Introduction	New Attack	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	g Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1.m'_2.m_3$
 - e.g. $\ell = 8$. $P = m'_1 . m'_2 . m_3$

Introduction	New Attack	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	g Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1.m'_2.m_3$

• e.g.
$$\ell = 8$$
. $P = m'_1.m'_2.m_3$

Introduction	New Attack	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	g Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1.m'_2.m_3$
 - e.g. $\ell = 8$. $P = m'_1.m'_2.m_3$

Introduction ○○○○○○○○●	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	; Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1.m'_2.m_3$

• e.g.
$$\ell = 8$$
. $P = m'_1 . m'_2 . m_3$

Introduction ○○○○○○○○●	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	; Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1 . m'_2 . m_3$
 - e.g. $\ell = 8$. $P = m'_1 . m'_2 . m_3$

Introduction ○○○○○○○○●	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	; Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1.m'_2.m_3$
 - e.g. $\ell = 8$. $P = m'_1.m'_2.m_3$

Introduction ○○○○○○○○●	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Rivest's Dithering	; Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - \blacktriangleright Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1 . m'_2 . m_3$
 - e.g. $\ell = 8$. $P = m'_1.m'_2.m_3$

Introduction	New Attack 00000000	Extensions 00	conclusion
Countermeasures			
Rivest's Ditherin	g Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - Need to choose/fix dithering symbols when building \mathcal{M}
 - ▶ How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1.m'_2.m_3$
 - e.g. $\ell = 8$. $P = m'_1.m'_2.m_3$

Introduction	New Attack	Extensions 00	conclusion
Countermeasures			
Rivest's Ditherin Effectiveness	ng Proposal		

- $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$
 - Need to choose/fix dithering symbols when building \mathcal{M}
 - How ? Need to match the actual sequence...
 - e.g. $\ell = 7$. $P = m_1 . m'_2 . m_3$
 - e.g. $\ell = 8$. $P = m'_1 . m'_2 . m_3$

Conclusion

Kelsey and Schneier's attack does not work with dithering

The new attack relies on the diamond structure from the herding attack of Kelsey and Kohno [EUROCRYPT'06].

- Complete binary tree of height ℓ
- ► Node ≃ chaining values
- ► Edges ≃ message blocks

The new attack relies on the diamond structure from the herding attack of Kelsey and Kohno [EUROCRYPT'06].

• Complete binary tree of height ℓ

- ► Node ≃ chaining values
- Edges \simeq message blocks
- Collision tree
- Maps 2^ℓ chaining values to h_◊ (paths of ℓ blocks in the tree)

 $f(x_5, m) = f(x_6, m') = x_2$

The new attack relies on the diamond structure from the herding attack of Kelsey and Kohno [EUROCRYPT'06].

 $f(x_5, m) = f(x_6, m') = x_2$

• Complete binary tree of height ℓ

- ► Node ≃ chaining values
- Edges \simeq message blocks
- Collision tree
- Maps 2^ℓ chaining values to h_◊ (paths of ℓ blocks in the tree)
- Built in time $2^{n/2+\ell/2+2}$

Introduction	New Attack	Extensions	conclusion
	0000000		
A New Generic Second	Preimage Attack against plain-MD		
Putting the "E	Diamond" at Work		

 $\rightarrow H(M)$

IV

Introduction 000000000	New Attack ⊙●⊙○○○○○	Extensions 00	conclusion
A New Generic Second	Preimage Attack against plain-MD		
Putting the "	Diamond" at Work		

Putting the "Diamor	nd" at Work		
A New Generic Second Preimage A	Attack against plain-MD		
Introduction 000000000	New Attack 0000000	Extensions 00	conclusion

Butting the "D	iamond" at Work		
A New Generic Second P	reimage Attack against plain-MD		
Introduction 000000000	New Attack 0●000000	Extensions 00	conclusion

Introduction 000000000	New Attack ⊙●⊙○○○○○	Extensions 00	conclusion
A New Generic Second	Preimage Attack against plain-MD		
Putting the "	Diamond" at Work		

Introduction	New Attack	Extensions	conclusion
	0000000		
A New Generic Second Preimage A	ttack against plain-MD		

Putting the "Diamond" at Work – Complexity

How much does this cost ? Assume $|M| = 2^k$.

- 1 Build diamond : $2^{n/2+\ell/2+2}$
- **2** Connect h_{\diamond} to $M : 2^{n-k}$
- **3** Generate *P* : free
- 4 Connect h_P to Diamond : $2^{n-\ell}$
- 5 Assemble parts : free

Total : $2^{n/2+\ell/2+2} + 2^{n-k} + 2^{n-\ell}$

Take $\ell \simeq n/3$. Complexity becomes $\simeq 5 \cdot 2^{2n/3} + 2^{n-k}$

SHA-1 (n = 160, k = 55, $\ell = 53$) : complexity = $2^{109.5}$

Introduction 0000000000	New Attack	Extensions 00	conclusion
With Dithering			
		-	

How To Cope With Rivest's Dithering ?

 $\mathbf{z} = \frac{\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{a}\mathbf{c}\mathbf{d}\mathbf{c}\mathbf{b}\mathbf{c}\mathbf{d}}{\mathbf{c}\mathbf{a}\mathbf{d}\mathbf{c}\mathbf{d}\mathbf{b}\mathbf{d}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{d}\mathbf{b}\mathbf{c}\mathbf{b}\mathbf{a}\ldots$

Question

How does this affect the attack ?

- \Longrightarrow We have to fix dithering symbols :
 - Inside the diamond
 - **2** When connecting h_{\diamond} to M

Key Ideas

- ► Fix a dithering symbol for each level of the diamond $\rightarrow \omega_i$ at level *i* $(1 \le i \le \ell)$
- guess the right symbol $(\omega_{\ell+1})$ for the connection

Introduction 0000000000	New Attack ○○○○●○○○○	Extensions 00	conclusion
With Dithering			

Introduction 0000000000	New Attack ○○○○●○○○	Extensions 00	conclusion
With Dithering			

IV

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba ...

Introduction 0000000000	New Attack ○○○○●○○○○	Extensions 00	conclusion
With Dithering			

Introduction 000000000	New Attack ○○○○●○○○	Extensions 00	conclusion
With Dithering			
How To Cope	With Rivest's Dither	ing (cont'd) ?	

Introduction 0000000000	New Attack ○○○○●○○○	Extensions 00	conclusion
With Dithering			
		(

Introduction 000000000	New Attack ○○○○○●○○	Extensions	conclusion
With Dithering			

How To Cope With Rivest's Dithering ? (end)

With dithering, the diamond (and connection) only works at certain positions, where $\omega_{1...(\ell+1)}$ matches z.

Question

How to choose ω ? Probability that ω matches z where \mathbb{B}_1 connects?

(Partial) Answer

Depends on z.

- Should choose a frequently-occuring factor of z
- Probability depends on how often it appears in z

Attack ?

Could there be frequently-occuring factors in z ?

Introduction	New Attack	Extensions	conclusion
000000000	○○○○○○●○	00	
With Dithering			
Analysis of Riv	est's dithering seque	nce	
Or : How a Crypta	nalyst Becomes a Sequen	ce-Theorist for a While	
Answer : YE	ES		

Theorem (Cobham,1972, "Uniform Tag Sequences") The number of different factors of size s in z is linear in s

- There is a very low number of different factors in z
 so at least one of them occur frequently.
- ▶ Would have been exponential for a pseudo-random sequence...

Before, for SHA-1, we chose $\ell = 53$

- How many factors of size 54 in z ? 772 !
- Careful choice of ω:

 \implies Each connecting block \mathbb{B}_1 works with probability $\geq 2^{-9}$

 \implies Just repeat the attack 2⁹ times !

Introduction 000000000	New Attack ○○○○○○●	Extensions 00	conclusion
With Dithering			
Complexity			

Same as before, except that many wrong connecting blocks \mathbb{B}_1 will be found before ω matches z.

$$2^{n/2+\ell/2+2} + Fact_{z}(\ell+1) \cdot 2^{n-k} + 2^{n-\ell}$$

For comparison with SHA-1, we take n = 160 and k = 55.

Hash function	ℓ	$\mathit{Fact}(\ell+1)$	SHA-1	Complexity
Plain-MD	55		2 ^{109.5}	$5 \cdot 2^{2n/3} + 2^{n-k}$
Keränen-Rivest	52	748	$2^{115.5}$	$(k + 40.5) \cdot 2^{n-k+3}$
Concrete-Rivest	52	33176	2 ¹²¹	2^{n-k+15}
Shoup's UOWHF	53	small	2 ¹¹²	$(2k+3)\cdot 2^{n-k}$

- Keränen-Rivest is what was described before
- Concrete-Rivest is Rivest's "concrete proposal" (similar to Keränen-Rivest, but include a 13-bit counter)
- Shoup's UOWHF was presented at [EUROCRYPT'2000]

Introduction	New Attack	Extensions	conclusion
		0	
Multiple Targets			

From One Long Message to Many Small Ones

Known generic second preimage attacks are long messages attacks Possible to find a 2nd preimage of one out of many small messages

Connection step:

- many small messages \simeq one big message
- \Rightarrow Target all of them at the same time

Introduction	New Attack	Extensions	conclusion
		0	
Multiple Targets			

From One Long Message to Many Small Ones

Known generic second preimage attacks are long messages attacks Possible to find a 2nd preimage of one out of many small messages

Introduction	New Attack	Extensions	conclusion
		0•	
Time/Memory/Data Tradeoff			

Faster Second Preimages With (quite a lot) More Precomputation

Hardest step : the connection. Let $g(\mathbb{B}) = f(h_{\mathcal{M}}, \mathbb{B})$.

- We need to find g^{-1} for one of the h_i
- Variation of Hellman's Time-Memory Tradeoff (2ⁿ precomputation)
- Also works with shorter messages !

range of <i>k</i>	Memory	Time
$k \le n/4$	$2^{2/3(n-k)}$	$2^{2/3(n-k)}$
$n/4 \le k \le n/2$	2 ^{n/2}	2 ^{n/2}

Introduction	New Attack	Extensions	conclusion
000000000	00000000	00	

Conclusion

- New generic second preimage attack
 - About the first half of the preimage can be chosen
- Attack works in the presence of dithering
 - Rivest's proposal(s) are broken
 - First Attack on Shoup's UOWHF, ROX, ...
- Various extensions of both new and existing attacks
 - Apply attack to collection of small messages
 - Various possibilities for a Time-Memory Tradeoff
- Attack is not applicable to HAIFA...