
Introduction New Attack Extensions conclusion

Second Preimage Attacks on Dithered Hash
Functions

Elena Andreeva1 Charles Bouillaguet2

Pierre-Alain Fouque2 Jonathan J. Hoch3 John Kelsey4

Adi Shamir2,3 Sebastien Zimmer2

1K.U. Leuven, ESAT/COSIC, Leuven-Heverlee, Belgium

2École Normale Supérieure, Paris, France

3Weizmann Institute of Science, Rehovot, Israel

4NIST, Gaithersburg, MD, USA

EUROCRYPT 2008



Introduction New Attack Extensions conclusion

Iterated Hash Functions

Hash Functions Cryptanalysis

H : {0, 1}∗ 7→ {0, 1}n

Should behave “like a random oracle”.

Collision attack Find M1 6= M2 s.t. H(M1) = H(M2).
Ideal security: 2n/2.

Second-preimage attack Given M1, find M2 6= M1 s.t.
H(M1) = H(M2).
Ideal security: 2n.

Preimage attack Given y , find M s.t. H(M) = y .
Ideal security: 2n.



Introduction New Attack Extensions conclusion

Iterated Hash Functions

Hash Functions Cryptanalysis

H : {0, 1}∗ 7→ {0, 1}n

Should behave “like a random oracle”.

Collision attack Find M1 6= M2 s.t. H(M1) = H(M2).
Ideal security: 2n/2.

Second-preimage attack Given M1, find M2 6= M1 s.t.
H(M1) = H(M2).
Ideal security: 2n.

Preimage attack Given y , find M s.t. H(M) = y .
Ideal security: 2n.



Introduction New Attack Extensions conclusion

Iterated Hash Functions

Hash Functions Cryptanalysis

H : {0, 1}∗ 7→ {0, 1}n

Should behave “like a random oracle”.

Collision attack Find M1 6= M2 s.t. H(M1) = H(M2).
Ideal security: 2n/2.

Second-preimage attack Given M1, find M2 6= M1 s.t.
H(M1) = H(M2).
Ideal security: 2n.

Preimage attack Given y , find M s.t. H(M) = y .
Ideal security: 2n.



Introduction New Attack Extensions conclusion

Iterated Hash Functions

The Merkle-Damgård Mode of Operation

Most hash functions are iterated hash functions :

I Split M into m-bit blocks : M = m0,m1, . . . ,mr

I Pad the last block (include binary encoding of |M|)
I Iterate a compression function f : {0, 1}n+m → {0, 1}n

f

m0

f

m1

f

m2

f

mr

h1 h2 h3 H(M)IV



Introduction New Attack Extensions conclusion

Generic Attacks

Generic Attacks

A full hash function is made of
I A compression function
I A mode of operation (i.e., a way of using it)

In this talk
Attacks against the mode of operation

I Works for all f : generic attacks
I Model f as a Random Oracle
I Collisions on f cost 2n/2



Introduction New Attack Extensions conclusion

Generic Attacks

Joux’s Multicollision [CRYPTO’04]
Towards the First Generic Second Preimage Attack

For the cost of k collisions, we can build a 2k -multicollision

I At each step, find a colliding block pair starting from the last
chaining value

I 2k paths between IV and hk

IV h1 h2 h3 hk

m1

m′1

m2

m′2

m3

m′3

Works because of the iterated structure of H !



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack [EUROCRYPT’05]

At step i , find a collision between a 1-block message and a
(2i + 1)-block message

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

|m1|=2 |m2|=3 |m3|=5

|m′1|=1 |m′2|=1 |m′3|=1

I Messages of sizes [k + 1; 2k+1 − 2] that hash to hk

⇒ expandable message

How to use this ?



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack (Cont’d)

1 Generate an Expandable MessageM that hashes to hM

2 Find a message block B “connecting” hM to M
3 UsingM, build P of length i − 1 that hashes to hM
4 Assemble all pieces to form a second preimage M ′

hM

M

IV H(M)
M



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack (Cont’d)

1 Generate an Expandable MessageM that hashes to hM
2 Find a message block B “connecting” hM to M

3 UsingM, build P of length i − 1 that hashes to hM
4 Assemble all pieces to form a second preimage M ′

hM

M

IV H(M)
M hi

Bf (hM, B) = hi



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack (Cont’d)

1 Generate an Expandable MessageM that hashes to hM
2 Find a message block B “connecting” hM to M
3 UsingM, build P of length i − 1 that hashes to hM

4 Assemble all pieces to form a second preimage M ′

hM

IV H(M)
M hi

Bf (hM, B) = hi

P



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack (Cont’d)

1 Generate an Expandable MessageM that hashes to hM
2 Find a message block B “connecting” hM to M
3 UsingM, build P of length i − 1 that hashes to hM
4 Assemble all pieces to form a second preimage M ′

hM

IV H(M)
M hi

B

M|≥i

f (hM, B) = hi

P

M ′ = P.B.M|≥i

H(M) = H(M ′)
|M ′| = |M|
M ′ 6= M



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack (end)

Cost of the attack:
I Build Expandable MessageM

I k collisions
I 2k ≥

∣∣M∣∣
I Cost: k · 2n/2

I “Connect” hM to target message (i.e., find B ).
I Cost : 2n/

∣∣M∣∣.
=⇒ If

∣∣M∣∣ = 2k , total cost : k · 2n/2 + 2n−k

I SHA-1 (k = 55, n = 160), total cost : 2106

Conclusion
There is a problem with the Merkle-Damgård mode of operation



Introduction New Attack Extensions conclusion

Generic Attacks

Kelsey & Schneier Second Preimage Attack (end)

Cost of the attack:
I Build Expandable MessageM

I k collisions
I 2k ≥

∣∣M∣∣
I Cost: k · 2n/2

I “Connect” hM to target message (i.e., find B ).
I Cost : 2n/

∣∣M∣∣.
=⇒ If

∣∣M∣∣ = 2k , total cost : k · 2n/2 + 2n−k

I SHA-1 (k = 55, n = 160), total cost : 2106

Conclusion
There is a problem with the Merkle-Damgård mode of operation



Introduction New Attack Extensions conclusion

Countermeasures

Dithering

Several new modes of operation recently suggested to replace MD.
I Some prevent the 2nd Preimage attack with dithering.

I Perturb the hash process
I new input from a fixed dithering sequence z.

I HAIFA : dithering with a 64-bit counter
I Rivest : dithering with 2-bit symbols

(Proposed at the 1st NIST Hash Workshop)

h1 h2 h3
f

m0

z[0]

f

m1

z[1]

f

m2

z[2]

f

mr

z[r ]

H(M)IV



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Description

Dithering with a repetition-free sequence on 4 letters :

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I no square in sequence
I square : bana.na

I Perturbs construction of the Expandable Message

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a b

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a b

cacdc

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a b

cacdc

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a

ab

b

cacdc

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a

ab

b c

cacdc

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a

ab

b c

cacdc acdcb

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

Countermeasures

Rivest’s Dithering Proposal
Effectiveness

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

I Need to choose/fix dithering symbols when buildingM
I How ? Need to match the actual sequence...

I e.g. ` = 7. P = m1.m′2.m3
I e.g. ` = 8. P = m′1.m

′
2.m3

IV h1 h2 h3

m1

m′1

m2

m′2

m3

m′3

a

ab

b c

cacdc acdcb

Conclusion
Kelsey and Schneier’s attack does not work with dithering



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

The “Diamond” Structure

The new attack relies on the diamond structure from the herding
attack of Kelsey and Kohno [EUROCRYPT’06].

h�

x1

x3

x4

x2

x5

x6

2`

I Complete binary tree of height `

I Node ' chaining values
I Edges ' message blocks

I Collision tree
I Maps 2` chaining values to h�

(paths of ` blocks in the tree)
I Built in time 2n/2+`/2+2



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

The “Diamond” Structure

The new attack relies on the diamond structure from the herding
attack of Kelsey and Kohno [EUROCRYPT’06].

h�

x1

x3

x4

x2

x5 m

x6 m′

f (x5,m) = f (x6,m′) = x2

2`

I Complete binary tree of height `

I Node ' chaining values
I Edges ' message blocks
I Collision tree
I Maps 2` chaining values to h�

(paths of ` blocks in the tree)

I Built in time 2n/2+`/2+2



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

The “Diamond” Structure

The new attack relies on the diamond structure from the herding
attack of Kelsey and Kohno [EUROCRYPT’06].

h�

x1

x3

x4

x2

x5 m

x6 m′

f (x5,m) = f (x6,m′) = x2

2`

I Complete binary tree of height `

I Node ' chaining values
I Edges ' message blocks
I Collision tree
I Maps 2` chaining values to h�

(paths of ` blocks in the tree)
I Built in time 2n/2+`/2+2



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

Putting the “Diamond” at Work

Replaying Kelsey and Schneier’s attack, but with a diamond

h�

x1
x3

x4

x2
x5

x6

2`

IV H(M)
M

I Build diamond

I Connect h� to M
I Choose prefix P
I Connect P to a leaf xj

I Assemble parts



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

Putting the “Diamond” at Work

Replaying Kelsey and Schneier’s attack, but with a diamond

h�

x1
x3

x4

x2
x5

x6

2`

IV
hi

H(M)
M

B1
f (h�, B1) = hi

I Build diamond
I Connect h� to M

I Choose prefix P
I Connect P to a leaf xj

I Assemble parts



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

Putting the “Diamond” at Work

Replaying Kelsey and Schneier’s attack, but with a diamond

h�

x1
x3

x4

x2
x5

x6

IV
hi

H(M)
M

B1
f (h�, B1) = hi

hP

P

I Build diamond
I Connect h� to M
I Choose prefix P

I Connect P to a leaf xj

I Assemble parts



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

Putting the “Diamond” at Work

Replaying Kelsey and Schneier’s attack, but with a diamond

h�

x1
x3

x4

x2
x5

x6

IV
hi

H(M)
M

B1
f (h�, B1) = hi

hP

P

B2

f (hP , B2) = xj

I Build diamond
I Connect h� to M
I Choose prefix P
I Connect P to a leaf xj

I Assemble parts



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

Putting the “Diamond” at Work

Replaying Kelsey and Schneier’s attack, but with a diamond

h�

x1
x3

x4

x2
x5

x6

h�

x1
x3

x4

x2
x5

x6

IV
hi

H(M)
M

B1

M|≥i

f (h�, B1) = hi

hP

P

B2

f (hP , B2) = xj

I Build diamond
I Connect h� to M
I Choose prefix P
I Connect P to a leaf xj

I Assemble parts



Introduction New Attack Extensions conclusion

A New Generic Second Preimage Attack against plain-MD

Putting the “Diamond” at Work – Complexity

How much does this cost ? Assume
∣∣M∣∣ = 2k .

1 Build diamond : 2n/2+`/2+2

2 Connect h� to M : 2n−k

3 Generate P : free
4 Connect hP to Diamond : 2n−`

5 Assemble parts : free

Total : 2n/2+`/2+2 + 2n−k + 2n−`

Take ` ' n/3. Complexity becomes ' 5 · 22n/3 + 2n−k

SHA-1 (n = 160, k = 55, ` = 53) : complexity = 2109.5



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering ?

z = abcacdcbcdcadcdbdabacabadbabcbdbcba . . .

Question
How does this affect the attack ?

=⇒ We have to fix dithering symbols :
1 Inside the diamond
2 When connecting h� to M

Key Ideas
I Fix a dithering symbol for each level of the diamond
→ ωi at level i (1 ≤ i ≤ `)

I guess the right symbol (ω`+1) for the connection



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering (cont’d) ?

h�

x1
x3

x4

x2
x5

x6

ω`ω`−1ω1

IV H(M)
M

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba . . .

I What if ω does not match z ?
=⇒ Diamond does not converge !
=⇒ Connection fails !

f (h�, zi , B1) 6= hi



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering (cont’d) ?

h�

x1
x3

x4

x2
x5

x6

ω`ω`−1ω1

IV
hi

H(M)
M

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba . . .

B1
ω`+1f (h�, ω`+1, B1) = hi

I What if ω does not match z ?
=⇒ Diamond does not converge !
=⇒ Connection fails !

f (h�, zi , B1) 6= hi



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering (cont’d) ?

h�

x1
x3

x4

x2
x5

x6

ω`ω`−1ω1

IV
hi

H(M)
M

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba . . .

B1
ω`+1

must be the same

f (h�, ω`+1, B1) = hi

I What if ω does not match z ?
=⇒ Diamond does not converge !
=⇒ Connection fails !

f (h�, zi , B1) 6= hi



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering (cont’d) ?

h�

x1
x3

x4

x2
x5

x6

ω`ω`−1ω1

IV
hi

H(M)
M

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba . . .

B1
ω`+1

must be the same

must be the same

f (h�, ω`+1, B1) = hi

I What if ω does not match z ?
=⇒ Diamond does not converge !
=⇒ Connection fails !

f (h�, zi , B1) 6= hi



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering (cont’d) ?

h�

x1
x3

x4

x2
x5

x6

ω`ω`−1ω1

IV
hi

H(M)
M

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba . . .

B1
ω`+1

must be the same

must be the same

f (h�, ω`+1, B1) = hi

I What if ω does not match z ?
=⇒ Diamond does not converge !
=⇒ Connection fails !

f (h�, zi , B1) 6= hi



Introduction New Attack Extensions conclusion

With Dithering

How To Cope With Rivest’s Dithering ? (end)

With dithering, the diamond (and connection) only works at certain
positions, where ω1...(`+1) matches z.

Question
How to choose ω? Probability that ω matches z where B1
connects?

(Partial) Answer

Depends on z.
I Should choose a frequently-occuring factor of z
I Probability depends on how often it appears in z

Attack ?
Could there be frequently-occuring factors in z ?



Introduction New Attack Extensions conclusion

With Dithering

Analysis of Rivest’s dithering sequence
Or : How a Cryptanalyst Becomes a Sequence-Theorist for a While

Answer : YES

Theorem (Cobham,1972, “Uniform Tag Sequences”)

The number of different factors of size s in z is linear in s

I There is a very low number of different factors in z
=⇒ so at least one of them occur frequently.

I Would have been exponential for a pseudo-random sequence...

Before, for SHA-1, we chose ` = 53
I How many factors of size 54 in z ? 772 !
I Careful choice of ω:

=⇒ Each connecting block B1 works with probability ≥ 2−9

=⇒ Just repeat the attack 29 times !



Introduction New Attack Extensions conclusion

With Dithering

Complexity

Same as before, except that many wrong connecting blocks B1 will
be found before ω matches z.

2n/2+`/2+2 + Factz(` + 1) · 2n−k + 2n−`

For comparison with SHA-1, we take n = 160 and k = 55.

Hash function ` Fact(` + 1) SHA-1 Complexity

Plain-MD 55 2109.5 5 · 22n/3 + 2n−k

Keränen-Rivest 52 748 2115.5 (k + 40.5) · 2n−k+3

Concrete-Rivest 52 33176 2121 2n−k+15

Shoup’s UOWHF 53 small 2112 (2k + 3) · 2n−k

I Keränen-Rivest is what was described before
I Concrete-Rivest is Rivest’s “concrete proposal”

(similar to Keränen-Rivest, but include a 13-bit counter)
I Shoup’s UOWHF was presented at [EUROCRYPT’2000]



Introduction New Attack Extensions conclusion

Multiple Targets

From One Long Message to Many Small Ones

Known generic second preimage attacks are long messages attacks

Possible to find a 2nd preimage of one out of many small messages

hM

IV H(M1)

IV H(M2)

IV H(M3)

M1

M2

M3

I Connection step:
I many small messages ' one big message
⇒ Target all of them at the same time

I Now we can find a second preimage of M2 !



Introduction New Attack Extensions conclusion

Multiple Targets

From One Long Message to Many Small Ones

Known generic second preimage attacks are long messages attacks

Possible to find a 2nd preimage of one out of many small messages

hM

IV H(M1)

IV H(M2)

IV H(M3)

M1

M2

M3

B

I Connection step:
I many small messages ' one big message
⇒ Target all of them at the same time

I Now we can find a second preimage of M2 !



Introduction New Attack Extensions conclusion

Time/Memory/Data Tradeoff

Faster Second Preimages With (quite a lot) More Precomputation

Hardest step : the connection. Let g(B) = f (hM, B).

hM

IV H(M)
M hi

Bg(B)=hi

I We need to find g−1 for one of the hi
I Variation of Hellman’s Time-Memory Tradeoff (2n precomputation)
I Also works with shorter messages !

range of k Memory Time

k ≤ n/4 22/3(n−k) 22/3(n−k)

n/4 ≤ k ≤ n/2 2n/2 2n/2



Introduction New Attack Extensions conclusion

Conclusion

I New generic second preimage attack
I About the first half of the preimage can be chosen

I Attack works in the presence of dithering
I Rivest’s proposal(s) are broken
I First Attack on Shoup’s UOWHF, ROX, . . .

I Various extensions of both new and existing attacks
I Apply attack to collection of small messages
I Various possibilities for a Time-Memory Tradeoff

I Attack is not applicable to HAIFA...


	Introduction
	Iterated Hash Functions
	Generic Attacks
	Countermeasures

	A New Second Preimage Attack
	A New Generic Second Preimage Attack against plain-MD
	With Dithering

	Extensions
	Multiple Targets
	Time/Memory/Data Tradeoff

	conclusion

