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We work over I,
with ged(q,6) =1
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Discrete Logarithm Problems

Recall the Elliptic Curve Discrete Logarithm Problem:

Given an elliptic curve E : y2 = F(x) over Fy
and P and Q in E(Fg) such that Q = [m]P, compute m.

We will consider the analogous problem where E is replaced by
the Jacobian Jx of a curve of genus 3.
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A brief look at Jacobians of genus 3 curves

Suppose X is an algebraic curve of genus 3.
Its Jacobian, Jx, is a 3-dimensional algebraic group associated to X.

Points of Jx correspond to divisor classes on X (elements of Pic%(X));
that is, equivalence classes of formal sums of points on X.

#Jx(Fq) = O(q?), so Pollard rho / BSGS solves DLP instances in Jx(F,)
in O(g%?) group operations.

We can do better using index calculus algorithms,
which use the geometry of X.
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Dichotomy of genus

3 curves and their DLPs

Curves of genus 3 fall into two geometric classes.

Genus 3 curves X over Fg

Hyperelliptic curves H/F,

Non-hyperelliptic curves C/IFg

Index calculus: (~)(q4/3)

(Gaudry, Thomé, Theriault, Diem)

Index calculus: O(q) (Diem)

Smith (LIX)
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Entertainment!

Too much mathematics already?
Official alternative entertainment
at
http://tinyurl.com/2g9mgh
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Geometry of genus 3 curves

Hyperelliptic curves
H:y? = F(x),

where F is a squarefree polynomial of degree 7 or 8
Hyperelliptic involution: ¢ : (x,y) +— (x,—y) induces —1 on Jy .
“Canonical map": 7: H — P!, (x,y) — x.
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Geometry of genus 3 curves

Hyperelliptic curves
H:y? = F(x),

where F is a squarefree polynomial of degree 7 or 8
Hyperelliptic involution: ¢ : (x,y) +— (x,—y) induces —1 on Jy .
“Canonical map": 7: H — P!, (x,y) — x.

Non-hyperelliptic curves
C: F(x0,x1,%x2) =0,

where F is a homogeneous polynomial of degree 4
Canonical map: embedding C < P2 (Nonsingular plane quartic).

We can compute canonical maps in polynomial time.
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Isogenies and the DLP

Hyperelliptic and non-hyperelliptic curves have different geometries.

H cannot be isomorphic to C
= Jy cannot be isomorphic to J¢c (as PPAVs)

...50 we can't translate index calculus algorithms between Jc and Jy.
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Isogenies and the DLP

Hyperelliptic and non-hyperelliptic curves have different geometries.

H cannot be isomorphic to C
= Jy cannot be isomorphic to Jc (as PPAVs)

...50 we can't translate index calculus algorithms between Jc and Jy.

We can have homomorphisms ¢ : Jy — J¢,
which we could use to translate DLPs from Jy to Jc¢:

Q=[mlP = &(Q) = [m]o(P).

DLP-based crypto uses absolutely simple Jacobians
= all useful homomorphisms are isogenies (surjective, finite kernel).
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Aim: explicit isogenies from hyperelliptic to non-hyperelliptic Jacobians.
Problem: a priori, we don't know of any useful isogenies... BUT:

Quotients of Jy by maximal Weil-isotropic subgroups
give isogenies to 3-dimensional PPAVs.
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Aim: explicit isogenies from hyperelliptic to non-hyperelliptic Jacobians.
Problem: a priori, we don't know of any useful isogenies... BUT:

Quotients of Jy by maximal Weil-isotropic subgroups
give isogenies to 3-dimensional PPAVs.

+

Oort and Ueno: every 3-dimensional PPAV over I
is isomorphic /F . to the Jacobian of a genus 3 curve.
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Aim: explicit isogenies from hyperelliptic to non-hyperelliptic Jacobians.
Problem: a priori, we don't know of any useful isogenies... BUT:

Quotients of Jy by maximal Weil-isotropic subgroups
give isogenies to 3-dimensional PPAVs.

+

Oort and Ueno: every 3-dimensional PPAV over I
is isomorphic /F . to the Jacobian of a genus 3 curve.

—

quotients of Jy by maximal Weil-isotropic subgroups
give isogenies to Jacobians of other genus 3 curves.
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Requirements on isogenies

For an isogeny ¢ : Jy — Jx to be useful to us,

(1) X must be isomorphic to a non-hyperelliptic C:
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Requirements on isogenies

For an isogeny ¢ : Jy — Jx to be useful to us,

(1) X must be isomorphic to a non-hyperelliptic C:

The isomorphism classes of genus 3 Jacobians
form a 6-dimensional moduli space,
with the hyperelliptic Jacobians forming a 5-dimensional subspace.
...s0 we expect X = C with overwhelming probability.
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Requirements on isogenies

For an isogeny ¢ : Jy — Jx to be useful to us,
(1) X must be isomorphic to a non-hyperelliptic C:

The isomorphism classes of genus 3 Jacobians
form a 6-dimensional moduli space,
with the hyperelliptic Jacobians forming a 5-dimensional subspace.
...s0 we expect X = C with overwhelming probability.

(2) the isogeny must be defined over F:

If ¢: Jy — Jc is defined over Fa, then ¢(Ju(Fq)) C Jc(Fga),
where Diem'’s algorithm works in time O(q?); we need d < 4/3.

Minimum requirement: ker ¢ defined over [, (Frobenius-stable)
(note: ker ¢ need not be contained in Jy(Fg))
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The big problem

We can try to construct useful isogenies by computing quotients by
(Frobenius-stable, maximal Weil-isotropic) subgroups.

Problem: lack of explicit constructions for genus 3 isogenies:
For most choices of kernel subgroup,
no explicit construction of the quotient isogeny is known.

We will give a solution to a special case (with kernel = (Z/27)3)

that turns out to be useful for a large proportion of genus 3 Jacobians.

Smith (LIX) Explicit isogenies and the DLP EUROCRYPT, April 2008

11/ 22



Computing explicit isogenies

The Weierstrass points of H : y2 = F(x, z)
are the eight points Wi, ..., Wg of H(F,) where y(W;) = 0.

The divisor classes (W — W], [W5 — Wy], [Ws — W], and [W7 — W]
generate a subgroup S & (Z/2Z)3 of Jy
(depends on the ordering of the W;).

We call such subgroups tractable subgroups.

We have derived explicit formulae for isogenies with tractable kernels.
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Trigonal maps

Suppose we are given H and S = ([W; — Wi4] : i € {1,3,5,7}).
Let g : P! — P! be a 3-to-1 (trigonal) map such that

g(m(W)) = g(m(Wit1)) for each [W; — Wipq] € S.
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Trigonal maps

Suppose we are given H and S = ([W; — Wi4] : i € {1,3,5,7}).
Let g : P! — P! be a 3-to-1 (trigonal) map such that
g(m(W:)) = g(m(Wis1)) for each [W; — Wiiy] € S.
Given a tractable subgroup S/F,, we compute g using basic linear algebra.
This requires solving a quadratic equation over [

= 50% chance that g is not defined over Fq
(since only half of the elements of F, are squares).

(Later: explicit descent should allow us to avoid this problem.)
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The trigonal construction
Recillas’ trigonal construction, applied to 7 : H — P! and g : P! — P!,
yields a curve X of genus 3 and a 4-to-1 map f : X — PL.

Donagi and Livné: there is an isogeny ¢ : Jy — Jx with kernel S.

R
TH T™X
/ X o~
X —
7
3
\ WH)/ \Wx)
4 pl

JX—>JC
\/
¢

Smith (LIX) Explicit isogenies and the DLP EUROCRYPT, April 2008 14 / 22



If Q is a point on P! then
(goﬂ-)_l(Q) = {Plv Pa, P3”'(P1)’L(P2)7L(P3)} CH

Qe {P1+ P2+ P3, o(Pr) +u(P2) + u(P3)},
fﬁl(Q) . Q2 — {P1+L(P2)+L(P3), L(P1)+P2—|—P3}, c X
- Q3 — {/,(Pl) —+ P2 =+ L(P3), P1 + L(Pz) + P3},

Q4 — {t(P1) +«(P2) + P3, P1+ P2+ (P3)}
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If Q is a point on P! then
(goﬂ-)_l(Q) = {P17 P2a P3aL(P1)’L(P2)7L(P3)} CH

Qu = {P1+ P2+ P3, o(P1) + (P2) + «(P3)},
fﬁl(Q) . Q2 — {P1+L(P2)+L(P3), L(P1)+P2—|—P3}, c X
- Q3 — {L(P1)+P2+L(P3), P1—|—L(P2)+P3},

Q4 > {t(P1) + o(P2) 4 P3, P1+ P>+ u(P3)}

Mumford representation: triples correspond to ideals
P1+ P>+ P3 «— (a(x),y — b(x))

a monic, dega =3, degb =2, b?> = F mod a
a(x(Pi)) =0, b(x(P;)) = y(Pi)
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An affine model for X

Mumford representation: pairs of triples correspond to pairs of ideals
{P1+ Py + P3,u(P1) + t(P2) + ¢(P3)} «— (a(x),y £ b(x))

— ie X parametrizes the coefficients of a and b°.
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An affine model for X

Mumford representation: pairs of triples correspond to pairs of ideals
{P1+ P2+ P3,u(P1) + t(P2) + t(P3)} < (a(x),y £ b(x))

— ie X parametrizes the coefficients of a and b°.

Q If g is defined by g : x — t = N(x)/D(x), then take
a(x) = N(x) — tD(x).

@ Let the coefficients of b2 be variables, then expand b%2 = F mod a
to get defining equations for an affine model of X.

© The map f : X — P! is projection onto the t-coordinate.
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An affine model for X

Mumford representation: pairs of triples correspond to pairs of ideals
{P1+ P2+ P3,u(P1) + t(P2) + t(P3)} < (a(x),y £ b(x))

— ie X parametrizes the coefficients of a and b°.

Q If g is defined by g : x — t = N(x)/D(x), then take
a(x) = N(x) — tD(x).

@ Let the coefficients of b2 be variables, then expand b%2 = F mod a
to get defining equations for an affine model of X.

© The map f : X — P! is projection onto the t-coordinate.

If g is defined over g, then so is our model of X.
If not, in theory we can use descent to find a model for X over IF,.
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The isogeny

Given X, f, and g, we compute the relative product H xp1 X.
After solving a quadratic equation — with 50% chance of success —

H xp1 X splits into two isomorphic curves, R and R’ (correspondences).

Take R; we have natural projections 775, :R — H and Tr)’}’ R — X.
We have an isogeny ¢ = (7). o (75)*; in terms of divisor classes,

— Zn,- Z W;(Q)

Qe (P

¢ [Z n; Pj

Using R’ instead gives us —¢.
essential square root — descent cannot fix this.

Smith (LIX) Explicit isogenies and the DLP EUROCRYPT, April 2008

17 / 22



Rationality
Recall requirement (2):
Our isogenies are only useful if they are defined over F.

We therefore need
Q An Fg-rational kernel subgroup S

© A model for X over [F,

— probability 1/2 for a given S over [,
or 1 with explicit descent on X

© The correspondence R to be defined over [F,
— probability 1/2 for a given S, g, X over Fq

= probability 1/4 (or 1/2) for each tractable S C Jy defined over F,.
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Rationality
Recall requirement (2):
Our isogenies are only useful if they are defined over F.

We therefore need
Q An Fg-rational kernel subgroup S

© A model for X over [F,

— probability 1/2 for a given S over [,
or 1 with explicit descent on X

© The correspondence R to be defined over [F,
— probability 1/2 for a given S, g, X over Fq

= probability 1/4 (or 1/2) for each tractable S C Jy defined over F,.

Question: how many tractable subgroups S over Fq?
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How many kernel subgroups are there?

H:y? = F(x,z): F homogeneous, squarefree, deg F = 8.
S(H) := set of Fy-rational tractable subgroups of Jy.

| Degrees of k-irreducible factors of F | #S(H) |

(8),(6,2),(6,1,1),(4,2,1,1) 1
(4,4) 5
(4,2,2),(4,1,1,1,1),(3,3,2),(3,3,1,1) 3
(2,2,2,1,1) 7
(2,2,1,1,1,1) o}
(2,1,1,1,1,1,1) 15

(2,2,2,2) 25
(1,1,1,1,1,1,1,1) 105

Other 0

“Security” of genus 3 hyperelliptic Jacobians depends significantly
on the factorization of the hyperelliptic polynomial F.
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How often do we have a rational isogeny?

Summing over probabilities of factorization types, we find that
for a randomly chosen H : y? = F(x), there is an expectation of

~ 18.57%

that our methods will produce an isogeny Jy — Jc over Fy.
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How often do we have a rational isogeny?

Summing over probabilities of factorization types, we find that
for a randomly chosen H : y? = F(x), there is an expectation of

~ 18.57%

that our methods will produce an isogeny Jy — Jc over Fy.

If we can use descent to account for the square root in computing g,
we obtain an even better expectation:

~ 31.13%
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Remarks

© Our approach is independent of the size of the DLP subgroup.
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Remarks

© Our approach is independent of the size of the DLP subgroup.
© These constructions are very fast (and also polynomial-time).

© With constructions for more general isogenies
(eg with kernels = (Z/3Z)3,(Z/5Z)3, etc...),
more hyperelliptic curves will be vulnerable to 5(q) index calculus
(including curves in characteristics 2 and 3).
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© This approach is not generally applicable in lower genus
(low probability of isogeny mapping to a weak curve...)
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Remarks

© Our approach is independent of the size of the DLP subgroup.
© These constructions are very fast (and also polynomial-time).

© With constructions for more general isogenies
(eg with kernels = (Z/3Z)3,(Z/5Z)3, etc...),
more hyperelliptic curves will be vulnerable to 5(q) index calculus
(including curves in characteristics 2 and 3).
© This approach is not generally applicable in lower genus
(low probability of isogeny mapping to a weak curve...)
© ...and probably will not work in higher genus either
(negligible probability of isogeny mapping to any Jacobian)

Smith (LIX) Explicit isogenies and the DLP EUROCRYPT, April 2008 21 /22



Thanks

Thanks: to Roger Oyono and Christophe Ritzenthaler

Smith (LIX) Explicit isogenies and the DLP  EUROCRYPT, April 2008 22 /22



