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We work over Fq,
with gcd(q, 6) = 1
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Discrete Logarithm Problems

Recall the Elliptic Curve Discrete Logarithm Problem:

Given an elliptic curve E : y2 = F (x) over Fq

and P and Q in E (Fq) such that Q = [m]P, compute m.

We will consider the analogous problem where E is replaced by
the Jacobian JX of a curve of genus 3.
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A brief look at Jacobians of genus 3 curves

Suppose X is an algebraic curve of genus 3.
Its Jacobian, JX , is a 3-dimensional algebraic group associated to X .

Points of JX correspond to divisor classes on X (elements of Pic
0(X ));

that is, equivalence classes of formal sums of points on X .

#JX (Fq) = O(q3), so Pollard rho / BSGS solves DLP instances in JX (Fq)

in Õ(q3/2) group operations.

We can do better using index calculus algorithms,
which use the geometry of X .
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Dichotomy of genus 3 curves and their DLPs

Curves of genus 3 fall into two geometric classes.

Genus 3 curves X over Fq

Hyperelliptic curves H/Fq

Index calculus: Õ(q4/3)
(Gaudry, Thomé, Theriault, Diem)

Non-hyperelliptic curves C/Fq

Index calculus: Õ(q) (Diem)
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Entertainment!

Too much mathematics already?
Official alternative entertainment

at
http://tinyurl.com/2g9mqh
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Geometry of genus 3 curves

Hyperelliptic curves

H : y2 = F (x),

where F is a squarefree polynomial of degree 7 or 8
Hyperelliptic involution: ι : (x , y) 7→ (x ,−y) induces −1 on JH .
“Canonical map”: π : H −→ P

1, (x , y) 7−→ x .
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Geometry of genus 3 curves

Hyperelliptic curves

H : y2 = F (x),

where F is a squarefree polynomial of degree 7 or 8
Hyperelliptic involution: ι : (x , y) 7→ (x ,−y) induces −1 on JH .
“Canonical map”: π : H −→ P

1, (x , y) 7−→ x .

Non-hyperelliptic curves

C : F (x0, x1, x2) = 0,

where F is a homogeneous polynomial of degree 4
Canonical map: embedding C →֒ P

2 (Nonsingular plane quartic).

We can compute canonical maps in polynomial time.
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Isogenies and the DLP
Hyperelliptic and non-hyperelliptic curves have different geometries.

H cannot be isomorphic to C

=⇒ JH cannot be isomorphic to JC (as PPAVs)

...so we can’t translate index calculus algorithms between JC and JH .
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Isogenies and the DLP
Hyperelliptic and non-hyperelliptic curves have different geometries.

H cannot be isomorphic to C

=⇒ JH cannot be isomorphic to JC (as PPAVs)

...so we can’t translate index calculus algorithms between JC and JH .

We can have homomorphisms φ : JH −→ JC ,
which we could use to translate DLPs from JH to JC :

Q = [m]P =⇒ φ(Q) = [m]φ(P).

DLP-based crypto uses absolutely simple Jacobians
=⇒ all useful homomorphisms are isogenies (surjective, finite kernel).
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Aim: explicit isogenies from hyperelliptic to non-hyperelliptic Jacobians.
Problem: a priori, we don’t know of any useful isogenies... BUT:

Quotients of JH by maximal Weil-isotropic subgroups
give isogenies to 3-dimensional PPAVs.
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Problem: a priori, we don’t know of any useful isogenies... BUT:

Quotients of JH by maximal Weil-isotropic subgroups
give isogenies to 3-dimensional PPAVs.

+

Oort and Ueno: every 3-dimensional PPAV over Fq

is isomorphic /Fq2 to the Jacobian of a genus 3 curve.
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Aim: explicit isogenies from hyperelliptic to non-hyperelliptic Jacobians.
Problem: a priori, we don’t know of any useful isogenies... BUT:

Quotients of JH by maximal Weil-isotropic subgroups
give isogenies to 3-dimensional PPAVs.

+

Oort and Ueno: every 3-dimensional PPAV over Fq

is isomorphic /Fq2 to the Jacobian of a genus 3 curve.

=⇒

quotients of JH by maximal Weil-isotropic subgroups
give isogenies to Jacobians of other genus 3 curves.
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Requirements on isogenies

For an isogeny φ : JH → JX to be useful to us,

(1) X must be isomorphic to a non-hyperelliptic C :
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Requirements on isogenies

For an isogeny φ : JH → JX to be useful to us,

(1) X must be isomorphic to a non-hyperelliptic C :

The isomorphism classes of genus 3 Jacobians
form a 6-dimensional moduli space,

with the hyperelliptic Jacobians forming a 5-dimensional subspace.
...so we expect X ∼= C with overwhelming probability.

Smith (LIX) Explicit isogenies and the DLP EUROCRYPT, April 2008 10 / 22



Requirements on isogenies

For an isogeny φ : JH → JX to be useful to us,

(1) X must be isomorphic to a non-hyperelliptic C :
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form a 6-dimensional moduli space,

with the hyperelliptic Jacobians forming a 5-dimensional subspace.
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Smith (LIX) Explicit isogenies and the DLP EUROCRYPT, April 2008 10 / 22



Requirements on isogenies

For an isogeny φ : JH → JX to be useful to us,

(1) X must be isomorphic to a non-hyperelliptic C :

The isomorphism classes of genus 3 Jacobians
form a 6-dimensional moduli space,

with the hyperelliptic Jacobians forming a 5-dimensional subspace.
...so we expect X ∼= C with overwhelming probability.

(2) the isogeny must be defined over Fq:

If φ : JH → JC is defined over Fqd , then φ(JH(Fq)) ⊂ JC (Fqd ),

where Diem’s algorithm works in time Õ(qd); we need d < 4/3.

Minimum requirement: ker φ defined over Fq (Frobenius-stable)
(note: ker φ need not be contained in JH(Fq))
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The big problem

We can try to construct useful isogenies by computing quotients by
(Frobenius-stable, maximal Weil-isotropic) subgroups.

Problem: lack of explicit constructions for genus 3 isogenies:
For most choices of kernel subgroup,

no explicit construction of the quotient isogeny is known.

We will give a solution to a special case (with kernel ∼= (Z/2Z)3)
that turns out to be useful for a large proportion of genus 3 Jacobians.
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Computing explicit isogenies

The Weierstrass points of H : y2 = F̃ (x , z)
are the eight points W1, . . . ,W8 of H(Fq) where y(Wi ) = 0.

The divisor classes [W1 − W2], [W3 − W4], [W5 − W6], and [W7 − W8]
generate a subgroup S ∼= (Z/2Z)3 of JH

(depends on the ordering of the Wi ).

We call such subgroups tractable subgroups.

We have derived explicit formulae for isogenies with tractable kernels.
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Trigonal maps

Suppose we are given H and S = 〈[Wi − Wi+1] : i ∈ {1, 3, 5, 7}〉.

Let g : P
1 → P

1 be a 3-to-1 (trigonal) map such that

g(π(Wi )) = g(π(Wi+1)) for each [Wi − Wi+1] ∈ S .
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Trigonal maps

Suppose we are given H and S = 〈[Wi − Wi+1] : i ∈ {1, 3, 5, 7}〉.

Let g : P
1 → P

1 be a 3-to-1 (trigonal) map such that

g(π(Wi )) = g(π(Wi+1)) for each [Wi − Wi+1] ∈ S .

Given a tractable subgroup S/Fq, we compute g using basic linear algebra.
This requires solving a quadratic equation over Fq

=⇒ 50% chance that g is not defined over Fq

(since only half of the elements of Fq are squares).

(Later: explicit descent should allow us to avoid this problem.)
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The trigonal construction
Recillas’ trigonal construction, applied to π : H → P

1 and g : P
1 → P

1,
yields a curve X of genus 3 and a 4-to-1 map f : X → P

1.

Donagi and Livné: there is an isogeny φ : JH → JX with kernel S .

R

H X C

P
1 JR

P
1 JH JX JC

πH

2

πX

3

π 2

g

3 f

4

(πH)∗ (πX )∗

∼=

??

∼=

φ
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If Q is a point on P
1, then

(g ◦ π)−1(Q) = {P1, P2, P3, ι(P1), ι(P2), ι(P3)} ⊂ H

f −1(Q) =





Q1 ↔ {P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)},
Q2 ↔ {P1 + ι(P2) + ι(P3), ι(P1) + P2 + P3},
Q3 ↔ {ι(P1) + P2 + ι(P3), P1 + ι(P2) + P3},
Q4 ↔ {ι(P1) + ι(P2) + P3, P1 + P2 + ι(P3)}





⊂ X
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If Q is a point on P
1, then

(g ◦ π)−1(Q) = {P1, P2, P3, ι(P1), ι(P2), ι(P3)} ⊂ H

f −1(Q) =





Q1 ↔ {P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)},
Q2 ↔ {P1 + ι(P2) + ι(P3), ι(P1) + P2 + P3},
Q3 ↔ {ι(P1) + P2 + ι(P3), P1 + ι(P2) + P3},
Q4 ↔ {ι(P1) + ι(P2) + P3, P1 + P2 + ι(P3)}





⊂ X

Mumford representation: triples correspond to ideals

P1 + P2 + P3 ←→ (a(x), y − b(x))

a monic, deg a = 3, deg b = 2, b2 ≡ F mod a

a(x(Pi )) = 0, b(x(Pi )) = y(Pi )
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An affine model for X

Mumford representation: pairs of triples correspond to pairs of ideals

{P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)} ←→ (a(x), y ± b(x))

— ie X parametrizes the coefficients of a and b2.
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An affine model for X

Mumford representation: pairs of triples correspond to pairs of ideals

{P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)} ←→ (a(x), y ± b(x))

— ie X parametrizes the coefficients of a and b2.

1 If g is defined by g : x 7→ t = N(x)/D(x), then take
a(x) = N(x) − tD(x).

2 Let the coefficients of b2 be variables, then expand b2 ≡ F mod a

to get defining equations for an affine model of X .

3 The map f : X → P
1 is projection onto the t-coordinate.
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An affine model for X

Mumford representation: pairs of triples correspond to pairs of ideals

{P1 + P2 + P3, ι(P1) + ι(P2) + ι(P3)} ←→ (a(x), y ± b(x))

— ie X parametrizes the coefficients of a and b2.

1 If g is defined by g : x 7→ t = N(x)/D(x), then take
a(x) = N(x) − tD(x).

2 Let the coefficients of b2 be variables, then expand b2 ≡ F mod a

to get defining equations for an affine model of X .

3 The map f : X → P
1 is projection onto the t-coordinate.

If g is defined over Fq, then so is our model of X .
If not, in theory we can use descent to find a model for X over Fq.
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The isogeny

Given X , f , and g , we compute the relative product H ×P1 X .
After solving a quadratic equation — with 50% chance of success —
H ×P1 X splits into two isomorphic curves, R and R ′ (correspondences).

Take R; we have natural projections πR
H : R → H and πR

X : R → X .
We have an isogeny φ = (πR

X )∗ ◦ (πR
H)∗; in terms of divisor classes,

φ :

[
∑

i

niPi

]
7−→




∑

i

ni

∑

Q∈(πR
H
)−1(Pi )

πR
X (Q)


 .

Using R ′ instead gives us −φ.
essential square root — descent cannot fix this.
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Rationality
Recall requirement (2):
Our isogenies are only useful if they are defined over Fq.

We therefore need

1 An Fq-rational kernel subgroup S

2 A model for X over Fq

−→ probability 1/2 for a given S over Fq

or 1 with explicit descent on X

3 The correspondence R to be defined over Fq

−→ probability 1/2 for a given S , g , X over Fq

=⇒ probability 1/4 (or 1/2) for each tractable S ⊂ JH defined over Fq.
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Rationality
Recall requirement (2):
Our isogenies are only useful if they are defined over Fq.

We therefore need

1 An Fq-rational kernel subgroup S

2 A model for X over Fq

−→ probability 1/2 for a given S over Fq

or 1 with explicit descent on X

3 The correspondence R to be defined over Fq

−→ probability 1/2 for a given S , g , X over Fq

=⇒ probability 1/4 (or 1/2) for each tractable S ⊂ JH defined over Fq.

Question: how many tractable subgroups S over Fq?
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How many kernel subgroups are there?

H : y2 = F̃ (x , z): F̃ homogeneous, squarefree, deg F̃ = 8.
S(H) := set of Fq-rational tractable subgroups of JH .

Degrees of k-irreducible factors of F̃ #S(H)

(8), (6, 2), (6, 1, 1), (4, 2, 1, 1) 1

(4, 4) 5

(4, 2, 2), (4, 1, 1, 1, 1), (3, 3, 2), (3, 3, 1, 1) 3

(2, 2, 2, 1, 1) 7

(2, 2, 1, 1, 1, 1) 9

(2, 1, 1, 1, 1, 1, 1) 15

(2, 2, 2, 2) 25

(1, 1, 1, 1, 1, 1, 1, 1) 105

Other 0

“Security” of genus 3 hyperelliptic Jacobians depends significantly
on the factorization of the hyperelliptic polynomial F .
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How often do we have a rational isogeny?

Summing over probabilities of factorization types, we find that
for a randomly chosen H : y2 = F (x), there is an expectation of

∼ 18.57%

that our methods will produce an isogeny JH → JC over Fq.
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How often do we have a rational isogeny?

Summing over probabilities of factorization types, we find that
for a randomly chosen H : y2 = F (x), there is an expectation of

∼ 18.57%

that our methods will produce an isogeny JH → JC over Fq.

If we can use descent to account for the square root in computing g ,
we obtain an even better expectation:

∼ 31.13%
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Remarks

1 Our approach is independent of the size of the DLP subgroup.
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2 These constructions are very fast (and also polynomial-time).

3 With constructions for more general isogenies
(eg with kernels ∼= (Z/3Z)3, (Z/5Z)3, etc...),
more hyperelliptic curves will be vulnerable to Õ(q) index calculus
(including curves in characteristics 2 and 3).
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Remarks

1 Our approach is independent of the size of the DLP subgroup.

2 These constructions are very fast (and also polynomial-time).

3 With constructions for more general isogenies
(eg with kernels ∼= (Z/3Z)3, (Z/5Z)3, etc...),
more hyperelliptic curves will be vulnerable to Õ(q) index calculus
(including curves in characteristics 2 and 3).

4 This approach is not generally applicable in lower genus
(low probability of isogeny mapping to a weak curve...)

5 ...and probably will not work in higher genus either
(negligible probability of isogeny mapping to any Jacobian)
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