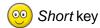
A Fast and Key-Efficient Reduction from Chosen-Ciphertext to Known-Plaintext Security

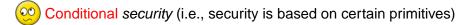
Ueli Maurer Johan Sjödin


Department of Computer Science ETH Zurich, Switzerland

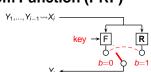
May 24, 2007

Introduction





- Efficient
- Short key
- Conditional security (i.e., security is based on certain primitives)

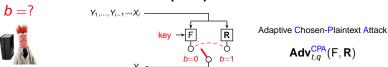


Encryption from wPRFs

Pseudorandom Function (PRF)

Adaptive Chosen-Plaintext Attack $Adv_{t,\alpha}^{CPA}(F,R)$

Conclusions


(Computational) Symmetric Cryptography

Efficient

Introduction

- Short key
- Conditional security (i.e., security is based on certain primitives)

Pseudorandom Function (PRF)

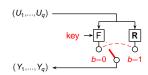
...but is AES really a pseudorandom permutation (and thus also a PRF)?

improve efficiency

Goal: weaken assumptions,

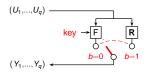
Conditional security (i.e., security is based on certain primitives)

Pseudorandom Function (PRF)


Adaptive Chosen-Plaintext Attack

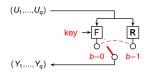
 $Adv_{t,\alpha}^{CPA}(F,R)$

...but is AES really a pseudorandom permutation (and thus also a PRF)?


wPRFs

Known-Plaintext Attack $\mathbf{Adv}_{t,a}^{\mathsf{KPA}}(\mathsf{F},\mathbf{R})$

Known-Plaintext Attack $\mathbf{Adv}_{t,q}^{\mathsf{KPA}}(\mathsf{F},\mathbf{R})$


How weak are weak PRFs (under standard assumptions)? E.g., they can:

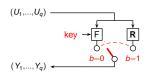
▶ have large fraction of fix-points, i.e., $F_k(x) = x$ for many x.

Encryption from wPRFs

This Paper: Weak PRFs

Known-Plaintext Attack

$$\mathsf{Adv}^{\mathsf{KPA}}_{t,q}(\mathsf{F},\mathsf{R})$$


How weak are weak PRFs (under standard assumptions)? E.g., they can:

- ▶ have large fraction of fix-points, i.e., $F_k(x) = x$ for many x.
- ▶ commute, i.e., $F_k(F_{k'}(x)) = F_{k'}(F_k(x))$.

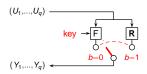
This Paper: Weak PRFs

Introduction

Known-Plaintext Attack

$$\mathbf{Adv}^{\mathsf{KPA}}_{t,q}(\mathsf{F},\mathbf{R})$$

How weak are weak PRFs (under standard assumptions)? E.g., they can:


- ▶ have large fraction of fix-points, i.e., $F_k(x) = x$ for many x.
- ▶ commute, i.e., $F_k(F_{k'}(x)) = F_{k'}(F_k(x))$.

$$\begin{array}{cccc} \exp: \mathbb{Z}_{|G|} \times G & \to & G & \text{(for DDH-group } G\text{)} \\ (k,x) & \mapsto & x^k \end{array}$$

Encryption from wPRFs

This Paper: Weak PRFs

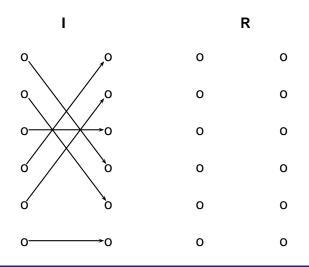
Known-Plaintext Attack

$$\mathsf{Adv}^{\mathsf{KPA}}_{t,q}(\mathsf{F},\mathsf{R})$$

How weak are weak PRFs (under standard assumptions)? E.g., they can:

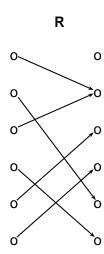
- ▶ have large fraction of fix-points, i.e., $F_k(x) = x$ for many x.
- ▶ commute, i.e., $F_k(F_{k'}(x)) = F_{k'}(F_k(x))$.


$$\operatorname{\mathsf{exp}}: \mathbb{Z}_{|G|} imes G o G ext{ (for DDH-group } G)$$
 $(k, x) \mapsto x^k$


Encryption from wPRFs

▶ be self inverse, i.e., $F_k(F_k(x)) = x$.

EUROCRYPT 2007


R

wPRFs

O.

wPRFs

▶ I or R under a CPA?

Encryption from wPRFs


```
0
0
     0
     0
0
     0
0
     0
```


wPRFs

▶ I or R under a CPA?

```
0
     0
     0
                   CPA
0
     0
     0
0
0
     0
```

▶ I or R under a CPA?

0 0

0 0

0 0

0

CPA ≉

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

▶ I or R under a KPA?

EUROCRYPT 2007

▶ I or R under a CPA?

0

0

▶ I or R under a KPA?

0

wPRFs

▶ I or R under a CPA?

▶ I or R under a KPA?

0 0

0 0

0 0

0

CPA

0 0

0

0 0

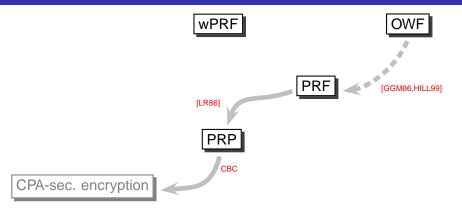
0 0

0 0

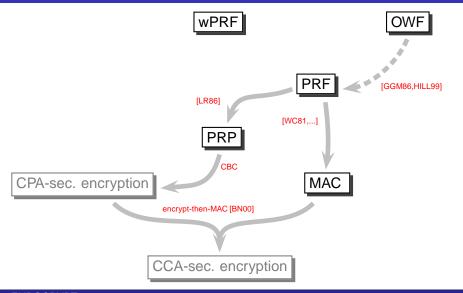
0 0

0 0

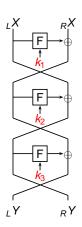
0 0


0 0

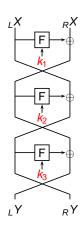
0 0


I ^{KPA} R

EUROCRYPT 2007


Efficient Symmetric Encryption based on wPRFs?

Efficient Symmetric Encryption based on wPRFs?


Feistel-Networks with PRFs do produce a PRP.

Feistel-Networks?

Feistel-Networks with wPRFs do not produce a PRP.

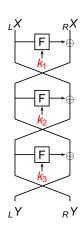
...even for infinitely many rounds!

Feistel-Networks?

Introduction

Feistel-Networks with wPRFs do not produce a PRP.

...even for infinitely many rounds!


Reason

The wPRF F can have 0 as fixpoint,

$$F_k(0) = 0$$
 (for all keys k)

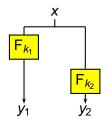
and hence

$$\psi[\mathsf{F}_{k_1}\mathsf{F}_{k_2}\mathsf{F}_{k_3}](0)=0.$$

1 block of data: $Enc_{k_1}(m_1) := \left[x, F_{k_1}(x) \oplus m_1 \right]$ [NaoRei98]

Introduction

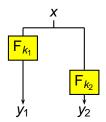
1 block of data:
$$Enc_{k_1}(m_1) := |x, F_{k_1}(x) \oplus m_1|$$
 [NaoRei98]


Encryption from wPRFs

2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & F_{k_1}(x) \oplus m_1 \\ F_{k_2}(x) \oplus m_2 \end{bmatrix}$$

1 block of data: $Enc_{k_1}(m_1) := \left[x, F_{k_1}(x) \oplus m_1 \right]$ [NaoRei98]

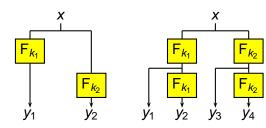
Encryption from wPRFs


2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$

1 block of data:
$$Enc_{k_1}(m_1) := \left[x, F_{k_1}(x) \oplus m_1 \right]$$
 [NaoRei98]

Encryption from wPRFs

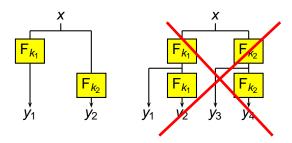
2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$



⇒ How to extend this further (using as few keys as possible)?

1 block of data: $Enc_{k_1}(m_1) := \left[x, F_{k_1}(x) \oplus m_1 \right]$ [NaoRei98]

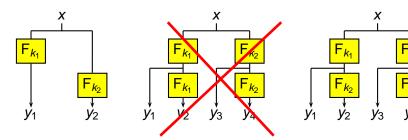
Encryption from wPRFs


2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$

⇒ How to extend this further (using as few keys as possible)?

1 block of data: $Enc_{k_1}(m_1) := |x, F_{k_1}(x) \oplus m_1|$ [NaoRei98]

2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$



⇒ How to extend this further (using as few keys as possible)?

Introduction

1 block of data: $Enc_{k_1}(m_1) := |x, F_{k_1}(x) \oplus m_1|$ [NaoRei98]

2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$

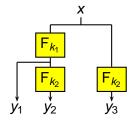
⇒ How to extend this further (using as few keys as possible)?

Introduction

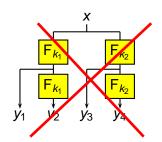
1 block of data: $Enc_{k_1}(m_1) := |x, F_{k_1}(x) \oplus m_1|$ [NaoRei98]

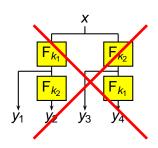
Encryption from wPRFs

2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$


⇒ How to extend this further (using as few keys as possible)?

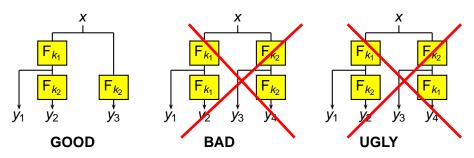
Introduction


1 block of data: $Enc_{k_1}(m_1) := |x, F_{k_1}(x) \oplus m_1|$ [NaoRei98]


Encryption from wPRFs

2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$

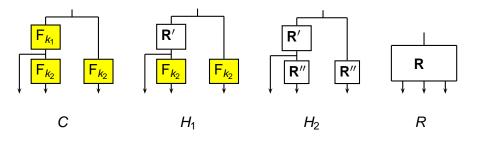
Introduction



⇒ How to extend this further (using as few keys as possible)?

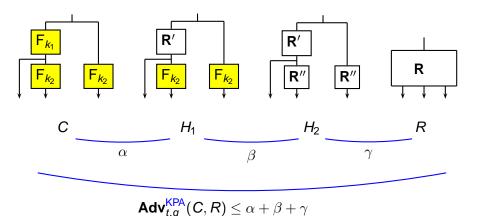
1 block of data: $Enc_{k_1}(m_1) := \left[x, F_{k_1}(x) \oplus m_1 \right]$ [NaoRei98]

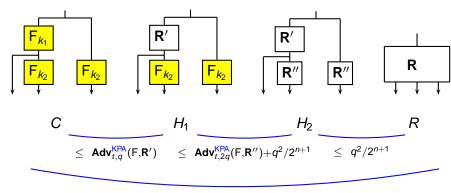
Encryption from wPRFs


2 blocks of data:
$$Enc_{k_1,k_2}(m_1,m_2) := \begin{bmatrix} x, & \mathsf{F}_{k_1}(x) \oplus m_1 \\ \mathsf{F}_{k_2}(x) \oplus m_2 \end{bmatrix}$$

⇒ How to extend this further (using as few keys as possible)?

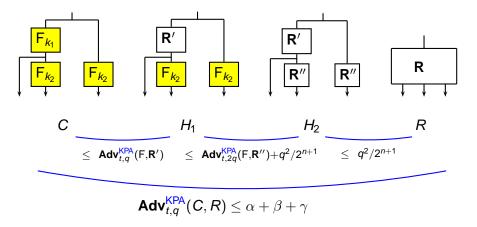
Introduction


Proof (of the "Good" range extension for wPRFs)

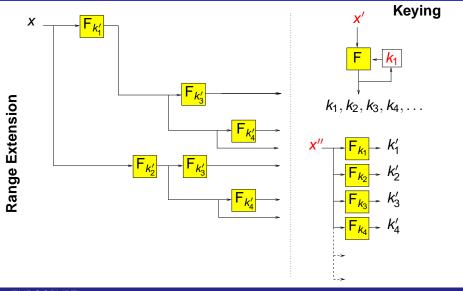

Encryption from wPRFs

 $Adv_{t,a}^{KPA}(C,R) \leq ?$

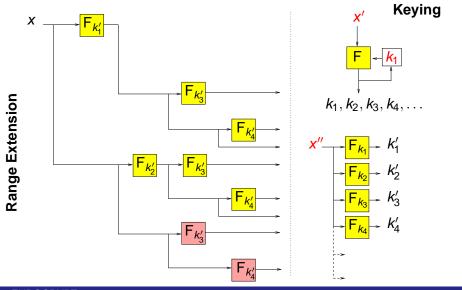
Encryption from wPRFs



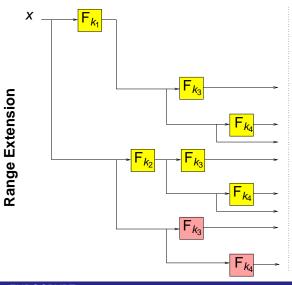
Proof (of the "Good" range extension for wPRFs)

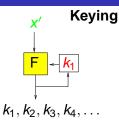

 $\mathsf{Adv}^{\mathsf{KPA}}_{t,a}(C,R) \leq \alpha + \beta + \gamma$

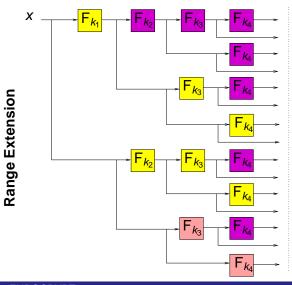
Proof (of the "Good" range extension for wPRFs)

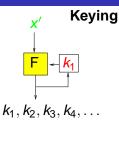


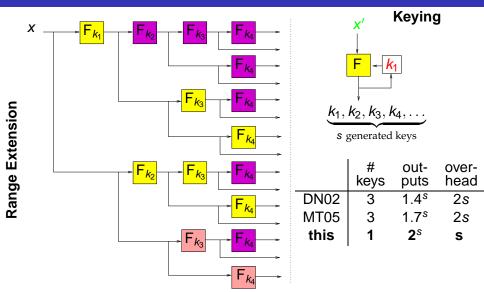
⇒ How can the range of F be extended even more?

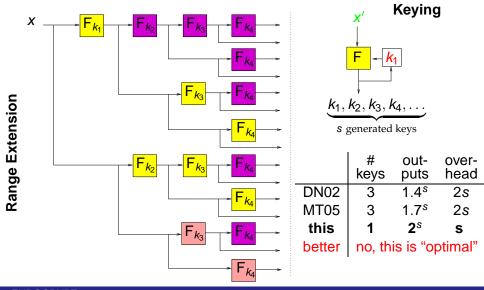

[DN02]

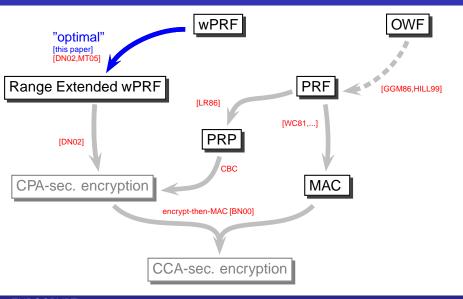


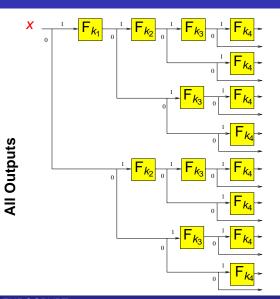

[MT05]

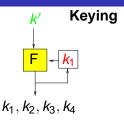



Encryption from wPRFs



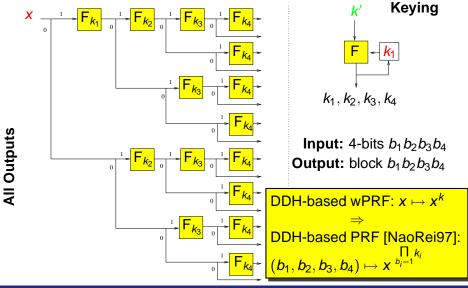





Overview

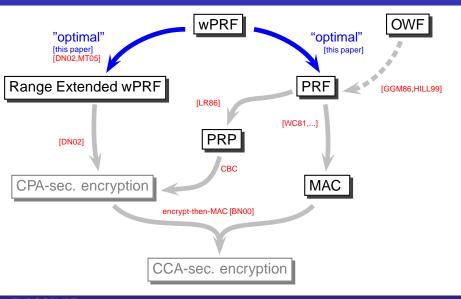
$wPRF \Rightarrow PRF$

[this paper]

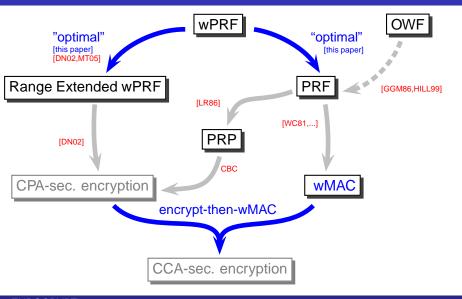


Encryption from wPRFs

Input: 4-bits $b_1b_2b_3b_4$

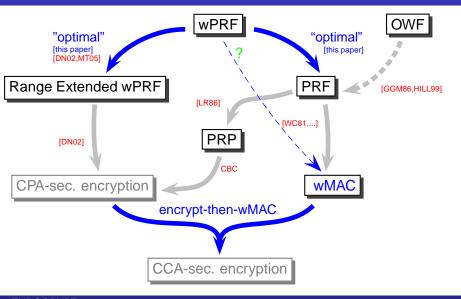

Output: block $b_1b_2b_3b_4$

$wPRF \Rightarrow PRF$



Conclusions

Conclusions



Conclusions

Conclusions

Conclusions

