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Pairings

I Let G1, G2, GT be groups of prime order `. A pairing is a
non-degenerate bilinear map e : G1 × G2 → GT .

I Bilinearity:
I e(g1 + g2, h) = e(g1, h)e(g2, h),
I e(g, h1 + h2) = e(g, h1)e(g, h2).

I Non-degenerate:
I for all g 6= 1: ∃x ∈ G2 such that e(g, x) 6= 1
I for all h 6= 1: ∃x ∈ G1 such that e(x , h) 6= 1

I Examples:
I Scalar product on euclidean space 〈·, ·〉 : R

n × R
n → R.

I Weil- and Tate pairings on elliptic curves and abelian
varieties.
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Pairings in cryptography

I Exploit bilinearity: original schemes G1 = G2
I MOV: DLP reduction from G1 to GT

DLP inG1 : (g, xg) ⇒ DLP in GT : (e(g, g), e(g, g)x )

I Decision DH easy in G1

DDH : (g, ag, bg, cg) test if e(g, cg) = e(ag, bg)

I Identity based crypto, short signatures, . . .
I (Too?) many new hardness assumptions and applications
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This paper

I New pairing on hyperelliptic curves called ate pairing
I Generalises and unifies previous work by:

I BGOS05: eta pairing on supersingular curves
I HSV06: ate pairing on elliptic curves

I What’s in a name?
I ate = Tate - T
I ate = reverse(eta)

I Spelling: ate and not Ate (please manually correct)
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Elliptic curves

I Let E be an elliptic curve over a finite field Fq, i.e.

E : y2 = x3 + ax + b for p > 5

I Point sets E(Fqk ) define an abelian group by
I Chord-tangent method
I Point at infinity ∞ ∈ E(Fq) is neutral element.

I Hasse-Weil: number of points in E(Fq) is q + 1 − t with

|t | ≤ 2
√

q
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Torsion subgroups

I E [`] subgroup of points of order dividing `, i.e.

E [`] = {P ∈ E(Fq) | `P = ∞}

I Structure of E [`] for gcd(`, q) = 1 is Z/`Z × Z/`Z.
I Let `|#E(Fq), then E(Fq)[`] gives at least one component.
I Embedding degree: k minimal with ` | (qk − 1).
I Note `-roots of unity µ` ⊆ F

×

qk .

I If k > 1 then E(Fqk )[`] = E [`].

R. Granger, F. Hess, R. Oyono, N. Thériault, F. Vercauteren Ate Pairing on Hyperelliptic Curves



Pairings
Elliptic curves

Tate pairing
Ate pairing

Frobenius endomorphism

I Frobenius: ϕ : E → E : (x , y) 7→ (x q, yq)

I Characteristic polynomial: ϕ2 − [t ] ◦ ϕ + [q] = 0
I Eigenvalues on E [`]: 1 and q since ` | #E(Fq)

I For k > 1 have q 6= 1 mod `, thus decomposition of E [`]
into Frobenius eigenspaces:

E [`] = E(Fqk )[`] = 〈P〉 × 〈Q〉

with ϕ(P) = P and ϕ(Q) = qQ
I Notation used before: G1 = 〈P〉 and G2 = 〈Q〉
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Functions and divisors
I Consider the function f = (x−1)2(x+2)

x on P
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I Divisor of f : (f ) = 2(P1) + (P−2) − (P0) − 2(P∞)

I Support of (f ): Supp((f )) = {P1, P−2, P0, P∞}
I Given divisor (f ), function is determined up to constant.
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Miller functions

I Let P ∈ E(Fq) and n ∈ N.
I A Miller function fn,P is any function in Fq(E) with divisor

(fn,P) = n(P) − ([n]P) − (n − 1)(∞)

I fn,P is determined up to a constant c ∈ F
×

q .
I fn,P has a zero at P of order n.
I fn,P has a pole at [n]P of order 1.
I fn,P has a pole at ∞ of order (n − 1).
I For every point Q 6= P, [n]P,∞, we have fn,P(Q) ∈ F

×

q .
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Tate pairing

I Let P ∈ E(Fqk )[`] and f`,P ∈ Fqk (E) with

(f`,P) = `(P) − `(∞)

I Note: f`,P has zero of order ` at P and pole of order ` at ∞.
I Tate pairing is defined as (assuming normalisation)

〈P, Q〉` = f`,P(Q)

I Technical stuff: need to adjust domain and image

〈·, ·〉` : E(Fqk )[`] × E(Fqk )/`E(Fqk ) → F
×

qk /(F
×

qk )
`

I Reduced Tate pairing: e(P, Q) = 〈P, Q〉(q
k
−1)/`

`
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Computing Tate pairing

I Miller’s algorithm: double-add algorithm using bits of `

I Loop length for Tate is log2(`)

I Many optimisations when restricting domain to G1 × G2

I BUT: Tate pairing still defined on the whole of E [`] × E/`E
I GOAL: construct efficient pairing only defined on G1 × G2?
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Ate pairing

I Like Tate, but evaluating ‘smaller‘ Miller function fs,P

I Recall E/Fq with #E(Fq) = q + 1 − t and `|#E(Fq)

I Define T = t − 1, then T ≡ q mod `

Pairing Zoo
Pairing Domain Where Who s Red

Tate E [`] × E/`E All HECs Miller ` No
eta G1 × G2 SuSi BGOS T No

ate EC G2 × G1 All ECs HSV T No
ate HEC G2 × G1 All HECs GHOTV q Yes
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Elliptic ate pairing

I Theorem: Let T = t − 1 and T k 6= 1. Then

a(·, ·) : G2 × G1 → Fqk /(Fqk )` : (Q, P) 7→ fT ,Q(P)

is a pairing, called the elliptic ate pairing
I Loop length is now log2(T ), but first argument over Fqk

I Need final powering by (qk − 1)/` to map into µ`, i.e.
reduced ate pairing

I In general T ' √
q, but could be as small as `1/ϕ(k)

I Need to use twists to make ate faster than Tate
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Extreme elliptic ate

I Smallest non-degenerate ate pairing for T = 2, i.e. t = 3.
I Pairing now becomes extremely simple:

(Q, P) 7→
(

y(P) − λ(Q)x(P) − µ(Q)

x(P) − x(2Q)

)(qk
−1)/`

with y = λ(Q)x + µ(Q) tangent line at Q
I Recall t can only be as small as `1/ϕ(k) so k has to be large
I Example: k = 197, p 374-bit, ` 185-bit, D = −59

r = 26828803997912886929710867041891989490486893845712448833
p = 35963440661935913170023543410469524001798434341740763180900650819132637400

398444889621193360259939721028905372447
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Hyperelliptic ate pairing

I Take C/Fq hyperelliptic curve and `|#JC(Fq)

I Let G1 = JC [`] ∩ Ker(ϕ − [1]) and G2 = JC [`] ∩ Ker(ϕ − [q])
then

a(·, ·) : G2 × G1 → µ` : (D2, D1) 7→ fq,D2
(D1)

defines a non-degenerate, bilinear pairing called the
hyperelliptic ate pairing

I No need for final powering, maps directly into µ`
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Pairing inversion in polynomial time

R.I.P. > 1000 papers
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Pairing inversion in polynomial time

?
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Pairing inversion (see GHV)

I Most pairings can be written as

(P, Q) 7→ fs,P(Q)d

with d is the final exponentiation (FE)
I E.g. Tate : s = ` and d = (qk − 1)/`

I Miller inversion (MI): invert fs,P(·)
I Tate: security in MI, FE does not add security!
I Ate: families where MI is polynomial time only

⇒ security totally in FE!
I BUT: does not imply weakness if used correctly . . .
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Conclusion

I New pairing with domain two eigenspaces of Frobenius
I Pairing reduced by itself, so no final exponentiation
I Efficiency not so good, except if twists are available
I Elliptic ate with D = −3 remains best pairing to use
I Applications to pairing inversion (see GHV)
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