Cryptanalysis of the Sidelnikov cryptosystem

Lorenz Minder, Amin Shokrollahi

 ${lorenz.minder,amin.shokrollahi}@epfl.ch.$

LMA, EPFL

McEliece type cryptosystems

PKCS based on error-correcting codes. C: error-correcting code.

 $\begin{array}{l} \mbox{Encryption} \leftrightarrow \mbox{Encode with } \mathcal{C} \mbox{ and add errors} \\ \mbox{Decryption} \leftrightarrow \mbox{Decode noisy codewords from } \mathcal{C} \end{array}$

Linear codes

- have a short description (basis of a linear space),
- are easy to encode (linear map),
- are hard to decode in general, but efficiently decodable codes exist.

Can decodeable codes be disguised?

Disguising linear codes

C is an [n, k] binary linear code with $k \times n$ generator matrix G, correcting t errors.

- Pick a random basis of the vector space. $(G \mapsto A \cdot G, \text{ where } A \text{ is } k \times k \text{ random invertible.})$
- Permute coordinate positions.
 Notation: C^σ is C with σ applied to its coordinate positions.
 (G → G · P, where P is an n × n permutation matrix for σ.)

So, $G_{pub} := AGP$ is a disguised generator matrix for C^{σ} .

McEliece type cryptosystems

- **Public key:** G_{pub} and t.
- Encryption: The binary vector $x = (x_1, \ldots, x_k)$ is encrypted as

$$y := xG_{\mathsf{pub}} + e \in \mathbb{F}_2^n,$$

where e is a random, weight t error pattern.

- Private key: Decoder for C^{σ} .
- Decryption: Decode.
- Hardness assumptions:
 - Decoding is hard in general.
 - Recovering the structure of C^{σ} is hard.

How secure is it ?

It depends on the code. Different families have been considered:

- Goppa-codes, originally proposed by McEliece, 1978. Unbroken.
- Reed-Solomon-codes proposed by Niederreiter, 1986.
 Broken by Sidelnikov & Shestakov, 1992
- Reed-Muller-codes proposed by SideInikov, 1994.
 Our target.
- Algebraic-Geometry-codes proposed by Janwa & Moreno, 1995.
- Non-algebraic codes. Usually easy to break.

Why Reed-Muller Codes ?

Reed-Muller codes were proposed, because:

- Resulting public keys are small.
- Can decode many more than d/2 errors with high probability (d is the minimum distance).
 - Thwarts direct decoding attacks.
 - Improves information rate.
- The decoder is very fast.

Our goal

We are given r, m and a random basis of a permuted rth order Reed-Muller code of length 2^m , $\mathcal{R}(r,m)^\sigma$, that is, a matrix $G_{pub} = AGP$. We want to find a permutation τ such that

$$\mathcal{R}(r,m)^{\tau\circ\sigma} = \mathcal{R}(r,m).$$

Want a private key for a given public key. In general, $\tau \circ \sigma \neq id$.

Reed-Muller Codes

f	CO	dev	vorc	ł				
1	1	1	1	1	1	1	1	1
v_1	0	0	0	0	1	1	1	1
v_2	0	0	1	1	0	0	1	1
v_3	0	1	0	1	0	1	0	1
$v_2 v_1$	0	0	0	0	0	0	1	1
$v_1 v_3$	0	0	0	0	0	1	0	1
$v_{3}v_{2}$	0	0	0	1	0	0	0	1

•
$$(\mathbb{F}_2[v_1, \dots, v_m]/v_1^2 - v_1, \dots, v_m^2 - v_m) \le r$$

• $\mathcal{R}(r, m)$: all evaluations on all points, $v_i \in \mathcal{R}(r, m)$:

$$\blacksquare$$
 $n=2^m$, $k=\sum_{i=0}^r \binom{m}{i}$, $d=2^{m-r}$.

 \mathbb{F}_{2} .

Minimum weight words

Boolean functions which are r linearly independent affine factors generate minimum weight words. E.g.,

$$f = v_1 v_2 \cdots v_r.$$

Is there any other way to construct minimum weight words? No. We have (Kasami & Tokura):

Proposition. If $f(v_1, \ldots, v_m)$ generates a minimum weight word in $\mathcal{R}(r, m)$, then f can be written as

$$f = f_1 \cdots f_r,$$

where the f_i are affine functions of v_1, \ldots, v_m .

Exploiting minimum weight words

Sketch of the procedure:

- Find a minimum weight word. (E.g., use the Canteaut-Chabaud algorithm.)
- Split a factor of the word. The factor will lie in $\mathcal{R}(r-1,m)^{\sigma}$.
- Repeat until a basis of $\mathcal{R}(r-1,m)^{\sigma}$ has been found.
- Repeat until a basis of $\mathcal{R}(1,m)^{\sigma}$ has been found.
- Identify τ such that

$$\mathcal{R}(1,m)^{\tau \circ \sigma} = \mathcal{R}(1,m).$$

Then $\mathcal{R}(r,m)^{\tau\circ\sigma} = \mathcal{R}(r,m)$.

Factoring minimum weight words

f: minimum weight word. W. I. o. g., $f = v_1 \cdots v_r$.

Let $(k_1, \ldots, k_r) \in \mathbb{F}_2^r \setminus {\hat{1}}$. Consider

$$I := \underbrace{\{v_1 = 1, \dots, v_r = 1\}}_{\text{supp}(f)} \cup \{v_1 = k_1, \dots, v_r = k_r\}.$$

Example. $\mathcal{R}(3,7), f = v_1 v_2 v_3, k = (1,0,1).$

In this case $\chi_I = v_1 v_3 \in \mathcal{R}(2,7)$.

Factoring minweight words (cont'd)

From the last slide:

$$I := \{v_1 = 1, \dots, v_r = 1\} \cup \{v_1 = k_1, \dots, v_r = k_r\}.$$

W.I.o.g., if $k = (\underbrace{1, \ldots, 1}_{t \text{ times}}, 0, \ldots, 0)$, then

$$\chi_I = v_1 \cdots v_t \cdot (1 + v_{t+1} + v_{t+2}) \cdots (1 + v_{r-1} + v_r).$$

Therefore $deg(\chi_I) \leq r - 1$ and so $\chi_I \in \mathcal{R}(r - 1, m)$.

- \implies want to explicitly construct a χ_I .
- \implies have to compute a set I given f.

Finding a set *I*

 $\mathcal{C}_{\operatorname{supp}(f)}$ is $\mathcal{R}(r,m)^{\sigma}$ shortened on $\operatorname{supp}(f)$.

It can be shown that, up to symbol permutation,

$$\mathcal{C}_{\mathrm{supp}(f)} \subseteq \mathcal{R}(r-1, m-r) \times \cdots \times \mathcal{R}(r-1, m-r),$$

with each of the factors in the cartesian product lying on the sets $\{v_1 = k_1, \ldots, v_r = k_r\}$, each factor for a different k.

Identifying the sets $\{v_1 = k_1, \dots, v_r = k_r\}$ is the same as identifying the positions of the ("inner") $\mathcal{R}(r-1, m-r)$ -blocks.

Finding inner words

Use Sendrier's algorithm for concatenated codes:

- Show that the support of any minimum weight word in $C_{\supp(f)}^{\perp}$ is contained within a single inner word.
- Let $x \in C_{\text{supp}(f)}^{\perp}$ be of minimum weight. If $x_i = 1 = x_j$, then *i* and *j* are positions in the same inner block.
- Collect enough such witnesses.

Recap

The steps to find a vector in $\mathcal{R}(r-1,m)^{\sigma}$ are:

- Find a minimum weight word f in $C = \mathcal{R}(r, m)^{\sigma}$.
- Compute the shortened code $C_{\text{supp}(f)} \subset C$.
- Recover the cartesian product structure of $C_{supp(f)}$.

If S is the set of positions of any inner word in $C_{supp(f)}$, the word with ones on the set

 $S \cup \mathrm{supp}(f)$

is a word in $\mathcal{R}(r-1,m)^{\sigma}$.

Finishing up

By iteration, we construct

$$\mathcal{R}(r,m)^{\sigma} \supset \mathcal{R}(r-1,m)^{\sigma} \supset \cdots \supset \mathcal{R}(1,m)^{\sigma}$$

Since $\mathcal{R}(r,m)^{\sigma}$ can be uniquely constructed from $\mathcal{R}(1,m)^{\sigma}$, need to solve the problem for $\mathcal{R}(1,m)^{\sigma}$, i.e., need to

find a permutation τ , such that

 $\mathcal{R}(1,m)^{\tau \circ \sigma} = \mathcal{R}(1,m).$

Recovering $\mathcal{R}(1,m)^{\sigma}$

f	CC	bde	WO	rd												
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
v_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
v_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
v_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
v_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
col	0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15

- Column index \leftrightarrow binary value $(v_m v_{m-1} \cdots v_1)_2$.
- G: random generator of $\mathcal{R}(1,m)^{\sigma}$. Throw away one row, and identify a permutation by the values of the columns. Success probability: 1/2.

How practical is it?

Running times on PC:

	r=2	r = 3	r = 4
$m = 7 \ (n = 128)$	0.009s	0.03s	
$m = 8 \ (n = 256)$	0.04s	0.18s	
$m = 9 \ (n = 512)$	0.24s	1.26s	2m 57s
$m = 10 \ (n = 1024)$	1.77s	16.15s	22h 49m 57s
$m = 11 \ (n = 2048)$	12.14s	5m 20.8s	10d 11h 55m

- It is practical whenever it is practical to find minimum weight words.
- Performance degrades if r is large.
- **•** For large r, Reed-Muller codes are not useful.