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McEliece type cryptosystems

PKCS based on error-correcting codes. C: error-correcting
code.

Encryption ↔ Encode with C and add errors

Decryption ↔ Decode noisy codewords from C

Linear codes

have a short description (basis of a linear space),

are easy to encode (linear map),

are hard to decode in general, but efficiently decodable
codes exist.

Can decodeable codes be disguised?
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Disguising linear codes

C is an [n, k] binary linear code with k × n generator matrix
G, correcting t errors.

Pick a random basis of the vector space.
(G 7→ A · G, where A is k × k random invertible.)

Permute coordinate positions.
Notation: Cσ is C with σ applied to its coordinate
positions.
(G 7→ G · P , where P is an n × n permutation matrix for
σ.)

So, Gpub := AGP is a disguised generator matrix for Cσ.
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McEliece type cryptosystems

Public key: Gpub and t.

Encryption: The binary vector x = (x1, . . . , xk) is
encrypted as

y := xGpub + e ∈ F
n
2 ,

where e is a random, weight t error pattern.

Private key: Decoder for Cσ.

Decryption: Decode.

Hardness assumptions:
Decoding is hard in general.
Recovering the structure of Cσ is hard.
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How secure is it ?

It depends on the code. Different families have been
considered:

Goppa-codes, originally proposed by McEliece, 1978.
Unbroken.

Reed-Solomon-codes proposed by Niederreiter, 1986.
Broken by Sidelnikov & Shestakov, 1992

Reed-Muller -codes proposed by Sidelnikov, 1994.
Our target.

Algebraic-Geometry-codes proposed by Janwa &
Moreno, 1995.

Non-algebraic codes. Usually easy to break.
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Why Reed-Muller Codes ?

Reed-Muller codes were proposed, because:

Resulting public keys are small.

Can decode many more than d/2 errors with high
probability (d is the minimum distance).

Thwarts direct decoding attacks.
Improves information rate.

The decoder is very fast.
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Our goal

We are given r,m and a random basis of a permuted rth
order Reed-Muller code of length 2m, R(r,m)σ, that is, a
matrix Gpub = AGP . We want to find a permutation τ such
that

R(r,m)τ◦σ = R(r,m).

Want a private key for a given public key.
In general, τ ◦ σ 6= id.
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Reed-Muller Codes

f codeword
1 1 1 1 1 1 1 1 1
v1 0 0 0 0 1 1 1 1
v2 0 0 1 1 0 0 1 1
v3 0 1 0 1 0 1 0 1

v2v1 0 0 0 0 0 0 1 1
v1v3 0 0 0 0 0 1 0 1
v3v2 0 0 0 1 0 0 0 1

(F2[v1, . . . , vm]/v2
1 − v1, . . . , v

2
m − vm)≤r

R(r,m): all evaluations on all points, vi ∈ F2.

n = 2m, k =
∑r

i=0

(
m
i

)
, d = 2m−r.
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Minimum weight words

Boolean functions which are r linearly independent affine
factors generate minimum weight words. E.g.,

f = v1v2 · · · vr.

Is there any other way to construct minimum weight words?
No. We have (Kasami & Tokura):

Proposition. If f(v1, . . . , vm) generates a minimum weight
word in R(r,m), then f can be written as

f = f1 · · · fr,

where the fi are affine functions of v1, . . . , vm.
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Exploiting minimum weight words

Sketch of the procedure:

Find a minimum weight word. (E.g., use the
Canteaut-Chabaud algorithm.)

Split a factor of the word. The factor will lie in
R(r − 1,m)σ.

Repeat until a basis of R(r − 1,m)σ has been found.

Repeat until a basis of R(1,m)σ has been found.

Identify τ such that

R(1,m)τ◦σ = R(1,m).

Then R(r,m)τ◦σ = R(r,m).
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Factoring minimum weight words

f : minimum weight word. W. l. o. g., f = v1 · · · vr.

Let (k1, . . . , kr) ∈ F
r
2 \ {1̂}. Consider

I := {v1 = 1, . . . , vr = 1}
︸ ︷︷ ︸

supp(f)

∪{v1 = k1, . . . , vr = kr}.

Example. R(3, 7), f = v1v2v3, k = (1, 0, 1).

v1 to v7

Chi(I)
f

In this case χI = v1v3 ∈ R(2, 7).
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Factoring minweight words (cont’d)

From the last slide:

I := {v1 = 1, . . . , vr = 1} ∪ {v1 = k1, . . . , vr = kr}.

W.l.o.g., if k = (1, . . . , 1
︸ ︷︷ ︸

t times

, 0, . . . , 0), then

χI = v1 · · · vt · (1 + vt+1 + vt+2) · · · (1 + vr−1 + vr).

Therefore deg(χI) ≤ r − 1 and so χI ∈ R(r − 1,m).

=⇒ want to explicitly construct a χI .

=⇒ have to compute a set I given f .
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Finding a set I

Csupp(f) is R(r,m)σ shortened on supp(f).

It can be shown that, up to symbol permutation,

Csupp(f) ⊆ R(r − 1,m − r) × · · · × R(r − 1,m − r),

with each of the factors in the cartesian product lying on the
sets {v1 = k1, . . . , vr = kr}, each factor for a different k.

Identifying the sets {v1 = k1, . . . , vr = kr} is the same as
identifying the positions of the (“inner”)
R(r − 1,m − r)-blocks.
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Finding inner words

Use Sendrier’s algorithm for concatenated codes:

Show that the support of any minimum weight word in
C⊥supp(f) is contained within a single inner word.

Let x ∈ C⊥supp(f) be of minimum weight. If xi = 1 = xj,
then i and j are positions in the same inner block.

Collect enough such witnesses.
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Recap

The steps to find a vector in R(r − 1,m)σ are:

Find a minimum weight word f in C = R(r,m)σ.

Compute the shortened code Csupp(f) ⊂ C.

Recover the cartesian product structure of Csupp(f).

If S is the set of positions of any inner word in Csupp(f), the
word with ones on the set

S ∪ supp(f)

is a word in R(r − 1,m)σ.
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Finishing up

By iteration, we construct

R(r,m)σ ⊃ R(r − 1,m)σ ⊃ · · · ⊃ R(1,m)σ.

Since R(r,m)σ can be uniquely constructed from R(1,m)σ,
need to solve the problem for R(1,m)σ, i.e., need to

find a permutation τ , such that

R(1,m)τ◦σ = R(1,m).
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Recovering R(1, m)σ

f codeword
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

v1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

v2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

v3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

v4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

col 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Column index ↔ binary value (vmvm−1 · · · v1)2.

G: random generator of R(1,m)σ. Throw away one row,
and identify a permutation by the values of the columns.
Success probability: 1/2.
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How practical is it?

Running times on PC:

r = 2 r = 3 r = 4

m = 7 (n = 128) 0.009s 0.03s
m = 8 (n = 256) 0.04s 0.18s
m = 9 (n = 512) 0.24s 1.26s 2m 57s
m = 10 (n = 1024) 1.77s 16.15s 22h 49m 57s
m = 11 (n = 2048) 12.14s 5m 20.8s 10d 11h 55m

It is practical whenever it is practical to find minimum
weight words.

Performance degrades if r is large.

For large r, Reed-Muller codes are not useful.
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