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M cEliece type cryptosystems
-

fPKCS based on error-correcting codes. C: error-correcting
code.
Encryption <+ Encode with C and add errors
Decryption <+~ Decode noisy codewords from C

Linear codes
# have a short description (basis of a linear space),
# are easy to encode (linear map),

# are hard to decode in general, but efficiently decodable
codes exist.

Can decodeable codes be disguised?
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Disguising linear codes

N N

C Is an [n, k| binary linear code with k& x n generator matrix
(z, correcting t errors.

# Pick a random basis of the vector space.
(G — A-G,where Ais k x k£ random invertible.)

#® Permute coordinate positions.
Notation: C? is C with o applied to its coordinate
positions.
(G — G- P,where P iIs an n x n permutation matrix for

0.)

So, Gpup := AGP 1s a disguised generator matrix for C°.
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°

°

M cEliece type cryptosystems

Public key: Gpy, and t.

Encryption: The binary vector x = (x1,...,xx) IS
encrypted as

Y = 2Gpyp + € € Iy,
where e is a random, weight ¢ error pattern.
Private key: Decoder for C°.

Decryption: Decode.

Hardness assumptions:
s Decoding is hard in general.
» Recovering the structure of C? is hard.

|

Cryptanalysis of the Sidelnikov cryptosystem — p.4/18



How secureisit ?

-

It depends on the code. Different families have been
considered:

-

#® Goppa-codes, originally proposed by McEliece, 1978.
Unbroken.

#® Reed-Solomon-codes proposed by Niederreiter, 1986.
Broken by Sidelnikov & Shestakov, 1992

# Reed-Muller-codes proposed by Sidelnikov, 1994.
Our target.

# Algebraic-Geometry-codes proposed by Janwa &
Moreno, 1995.

#® Non-algebraic codes. Usually easy to break.
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Why Reed-Muller Codes ?
R

#® Resulting public keys are small.

eed-Muller codes were proposed, because:

o Can decode many more than d/2 errors with high
probabillity (d is the minimum distance).

s Thwarts direct decoding attacks.
s Improves information rate.

# The decoder Is very fast.
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Our goal
- -

We are given r,m and a random basis of a permuted rth
order Reed-Muller code of length 2™, R(r,m)?, that Is, a
matrix Gpyy = AGP. We want to find a permutation 7 such
that

R(r,m)™% =R(r,m).

Want a private key for a given public key.
In general, 7 o o # id.
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Reed-Muller Codes

codeword
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o (Fg[vl,...,vm]/v%—vl,...,vm—vm

® R(r,m): all evaluations on all points, v; € Fs.

e =2 k=Y (4),d=2m
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Minimum weight wor ds

-

fBoolean functions which are r linearly independent affine
factors generate minimum weight words. E.g.,

f=uvv2---v,.

Is there any other way to construct minimum weight words?
No. We have (Kasami & Tokura):

Proposition. If f(vy,...,v,) generates a minimum weight
word in R(r,m), then f can be written as

f:fl'”f?“a

where the f; are affine functions of vy, ..., v,,.
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Exploiting minimum weight wor ds

-

Sketch of the procedure:

-

# Find a minimum weight word. (E.g., use the
Canteaut-Chabaud algorithm.)

# Split a factor of the word. The factor will lie in
R(r—1,m)°.

# Repeat until a basis of R(r — 1,m)? has been found.

°

Repeat until a basis of R(1,m)? has been found.
# Identify 7 such that

R(1,m)™7 = R(1,m).
Then R(r,m)™®? = R(r,m).
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Factoring minimum weight wor ds

- N

f: minimum weight word. W.l.o. g., f =v1---v,.
Let (ki,...,k.) € F5\ {1}. Consider

I ={vu=1,...;0., =1} UHvy =k1,...,v, = k. }

N

supp(f)

Example. R(3, 7), f =vivus, k = (1, 0, 1).
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In this case x; = viv3 € R(2,7).
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Factoring minwelght wor ds (cont’d)

. N

rom the last slide:
I = {Ulzl,...,UTZI}U{Ul:kl,...,vr:/{r}.

W.l.o.g. ifk=(1,...,1,0,...,0), then
N——

t times
X1 =21V (L+vg1+veg2) - (L +v—1 +vp).
Therefore deg(y;) <r—1andso y; € R(r — 1,m).

— want to explicitly construct a ;.

— have to compute a set I given f.
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Findingaset |
-

Coupp(#) 1S R(r,m)? shortened on supp(f). T

It can be shown that, up to symbol permutation,
Coupp(f) S R(r—1,m—r) x -« x R(r—1,m—r),

with each of the factors in the cartesian product lying on the
sets {v; = k1,...,v, = k,}, each factor for a different %.

ldentifying the sets {v; = k1,...,v, = k,} IS the same as
identifying the positions of the (“inner”)
R(r —1,m — r)-blocks.
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Finding inner words

-

Use Sendrier’s algorithm for concatenated codes:

-

# Show that the support of any minimum weight word in
Cjupp(f) IS contained within a single inner word.

® Letwz € Cy s be of minimum weight. If 2; = 1 = 2,
then ¢ and 5 are positions in the same inner block.

# Collect enough such witnesses.
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Recap

-

The steps to find a vector in R(r — 1, m)? are:
# Find a minimum weight word f in C = R(r,m)°.
C C.

#® Recover the cartesian product structure of C

» Compute the shortened code Cqpp( 4

supp(f) -
If S Is the set of positions of any inner word in C , the

word with ones on the set

supp(f)

S U supp(f)

Isaword in R(r —1,m)°.
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Finishing up

. N

y iteration, we construct
R(r,m)° DR(r—1,m)° D --- D R(1,m)°.

Since R(r,m)? can be uniquely constructed from R(1,m),
need to solve the problem for R(1,m)?, i.e., need to

find a permutation 7, such that

R(1,m)™° = R(1,m).
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o

Recovering R(1, m)°

f | codeword

11 1111111111 1 1 1 1 1
»n |00 00O0O0O0OO0OT1T1T 1 1 1 1 1 1
|0 000111100 0 0 1 1 1 1
v3 |00 1 1 001 10O0 1 1T 0 0 1 1
w01 01 010101 0 1 0 1 0 1
colfl0 1 23 45 6 78 9 10 11 12 13 14 15

o Column index < binary value (v, v;m—1 - v1)2.

# (' random generator of R(1,m)?. Throw away one row,
and identify a permutation by the values of the columns.

Success probability: 1/2.
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-

R

How practical Isit?

unning times on PC:
r =2 r=3 r=4
m =717 (n=128) 0.009s 0.03s
m = 8 (n = 256) 0.04s 0.18s
m =9 (n =512) 0.24s 1.26s 2m 57s
m =10 (n =1024) | 1.77s 16.15s | 22h 49m 57s
m =11 (n =2048) | 12.14s | 5m 20.8s | 10d 11h 55m

# It is practical whenever it is practical to find minimum

weight words.

# Performance degrades if r Is large.

o

# For large r, Reed-Muller codes are not useful.
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