
Differential Cryptanalysis of
the Stream Ciphers
Py, Py6 and Pypy

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven
ESAT/COSIC

K.U. Leuven, ESAT/COSIC 2

eSTREAM – ECRYPT Stream Cipher Project

A multi-year project to identify new stream ciphers that might
become suitable for widespread adoption

eSTREAM considers stream ciphers for two types of
environments

Profile 1
Stream ciphers for high throughput SW applications
128-bit key, 64 and 128-bit IVs

Profile 2
Stream ciphers for HW with restricted resources
80-bit key, 32-bit and 64-bit IVs

Associated authentication mechanisms are also studied

K.U. Leuven, ESAT/COSIC 3

eSTREAM Timeline http://www.ecrypt.eu.org/stream

2004 2005 20082006 2007

10/04 04/05 07/06 04/07 05/08

CfP Phase 1 Phase 2 Phase 3

SASC
2004

SKEW
2005

SASC
2006

SASC
2007

SASC
2008

Final
Report

K.U. Leuven, ESAT/COSIC 4

eSTREAM Submission status
34 submissions

23 for software profile
25 for hardware profile

Phase 3 candidates
Eight software profile ciphers:
CryptMT Dragon HC LEX NLS Rabbit Salsa20 SOSEMANUK
Eight hardware profile ciphers:
DECIM Edon80 F-FCSR Grain MICKEY Moustique Pomaranch
Trivium

K.U. Leuven, ESAT/COSIC 5

Overview
1. Introduction to Py, Py6 and Pypy
2. Identical keystreams of Py and Pypy
3. Key recovery attacks on Py and Pypy
4. Security of Py6
5. Tweaks of Py, Py6 and Pypy
6. Conclusions

K.U. Leuven, ESAT/COSIC 6

1. Py, Pypy and Py6 (1)
Py, Pypy

designed by Biham and Seberry
submissions to eSTREAM
eSTREAM phase 2 software focus ciphers

Main Features of Py and Pypy:
RC4 type stream ciphers
Rolling array: using extra memory space to

achieve fast array rotation !!
Fast: Py – 2.85 cycles/byte

Pypy – 4.88 cycles/byte (Pentium M)

K.U. Leuven, ESAT/COSIC 7

1. Py, Py6 and Pypy (2)
Py6 is the reduced version of Py (smaller internal state)

Internal state size: Py (10,400 bits)
Py6 (2,592 bits)

=> the key/IV setup of Py6 is about 3 times faster than
that of Py

K.U. Leuven, ESAT/COSIC 8

1. Py, Py6 and Pypy (3)
Previous Distinguishing Attacks against Py and Py6

Py – 289 outputs (FSE’06, Paul, Preneel and Sekar)
improved to 272 outputs (Crowley, 2006)

Py6 – 269 outputs (Asiacrypt’06, Paul and Preneel)

Pypy – proposed to resist the distinguishing attacks by
discarding half of the outputs of Py

K.U. Leuven, ESAT/COSIC 9

1. Py, Py6 and Pypy (4)
Our attacks against Py, Pypy and Py6

1) Identical keystreams appear with high probability

Py and Pypy – every 216 IVs with special differences
Py6 – every 27 IVs with special differences

=> insecure

K.U. Leuven, ESAT/COSIC 10

1. Py, Py6 and Pypy (5)

2) Key recovery attack against Py and Pypy

for 16-byte key and 16-byte IV, with 223 chosen IVs,
effective key size reduced to 3 bytes

for 32-byte key and 32-byte IV, with 224 chosen IVs,
effective key size reduced to 3 bytes

=> insecure

K.U. Leuven, ESAT/COSIC 11

2. Identical Keystreams of Py, Pypy (1)
The Key/IV setup of Py and Pypy are identical

=> The attacks against Py and Pypy are the same

IV setup is non-invertible
=> Resulting in collision of the internal state
=> Identical keystreams for different IVs

K.U. Leuven, ESAT/COSIC 12

2. Identical Keystreams of Py, Pypy (2)
We examine part of the IV setup of Py and Pypy

IV is applied to update s
and EIV twice!

Y: secret array with 260
32-bit elements

P: 8-bit permutation table
(with 15-bit secret info)

s: 32-bit internal state

EIV: temporary byte array

K.U. Leuven, ESAT/COSIC 13

2. Identical Keystreams of Py, Pypy (3)
In the above algorithm, IV is applied to update s and the array
EIV twice. After that s and EIV are applied to update the array
Y and permutation table P

If different IVs result in the same s and EIV, then the
keystreams will be identical

The attack is to find the special IV differences that lead to the
same s and EIV

K.U. Leuven, ESAT/COSIC 14

2. Identical Keystreams of Py, Pypy (4)
Attack 1. Two adjacent IV bytes are different:

,

At the i-th step in the first ‘for’ loop,

s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the ith step, ,

K.U. Leuven, ESAT/COSIC 15

2. Identical Keystreams of Py, Pypy (5)
,

At the (i+1)-th step in the first ‘for’ loop,

s = s + iv[i+1] + Y(YMININD+i+1);
u8 s0 = P(s&0xFF);
EIV(i+1) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the (i+1)-th step, if , then the
two s will be identical, and with high probability
=> for the others steps in the first ‘for’ loop, the two s remain identical

K.U. Leuven, ESAT/COSIC 16

2. Identical Keystreams of Py, Pypy (6)
,

At the i-th step in the second ‘for’ loop,

s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the i-th step,
and

K.U. Leuven, ESAT/COSIC 17

2. Identical Keystreams of Py, Pypy (7)
,

At the (i+1)-th step in the second ‘for’ loop,

s = s + iv[i+1] + Y(YMAXIND-i-1);
u8 s0 = P(s&0xFF);
EIV(i+1) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

At the end of the (i+1)-th step, if , then the
two s will be identical, and with high probability

K.U. Leuven, ESAT/COSIC 18

2. Identical Keystreams of Py, Pypy (8)
,

From the simulation, the above difference results in identical
keystream with probability about 2-23.2.

With the lsb of IV[i] and all the 8 bits of IV[i+1] choose all
the possible values, 216 IV pairs can be obtained from these
512 IVs.

=> one identical keystream pair appears for about 216 IVs

K.U. Leuven, ESAT/COSIC 19

2. Identical Keystreams of Py, Pypy (9)
Attack 2. Three-byte IV differences

(details omitted)
From the simulation, the above difference results in identical
keystream with probability about 2-23.

=> one identical keystream pair appears for about 216 IVs

K.U. Leuven, ESAT/COSIC 20

3. Key Recovery Attacks (1)
From the collision of the internal state, a number of equations
can be generated to recover the key of Py and Pypy

Three steps:
1) Recovering part of the array Y from the IV setup
2) Recovering the 15-bit secret information in P from IV setup
3) Recovering the key from the key setup

K.U. Leuven, ESAT/COSIC 21

3. Key Recovery Attacks (2)
Recovering part of the array Y from the IV setup

for(i=0; i<ivsizeb; i++) {
s = s + iv[i] + Y(YMININD+i);
u8 s0 = P(s&0xFF);
EIV(i) = s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

In the above algorithm (the first ‘for’ loop), if two keystreams are
identical, the difference in s will be eliminated by the difference in IVs

K.U. Leuven, ESAT/COSIC 22

3. Key Recovery Attacks (3)
Recovering part of the array Y from the IV setup

For the two-byte IV differences, the following equation can be obtained:

where is a fixed IV, the first i bytes of iv1 and iv2 are identical to that
of , and

with 7 equations above, the values of and
can be determined almost uniquely.

K.U. Leuven, ESAT/COSIC 23

3. Key Recovery Attacks (4)
Recovering part of the array Y from the IV setup

From the values of and ,
the value of can be computed since

From the values of and , the value of Y-3+i+1,0

is known

=> The values of can be determined
with about IVs.

K.U. Leuven, ESAT/COSIC 24

3. Key Recovery Attacks (5)
Recovering part of the array Y from the IV setup

Exploiting to the second ‘for’ loop

for (i=0; i<ivsizeb; i++) {
s = s + iv[i] + Y(YMAXIND-i);
u8 s0 = P(s&0xFF);
EIV(i) += s0;
s = ROTL32(s, 8) ^ (u32)s0;

}

=> The values of can be determined
with about IVs.

K.U. Leuven, ESAT/COSIC 25

3. Key Recovery Attacks (6)
Recovering the 15-bit secret information in Permutation P

When recovering part of Y, only the difference elimination in s is
considered.

Now consider that the difference in EIV is also eliminated in the second
‘for’ loop for identical keystream pair, the 15-bit secret information in P
can be easily determined (details omitted here)

K.U. Leuven, ESAT/COSIC 26

3. Key Recovery Attacks (7)
Recovering the key

for(i=YMININD, j=0; i<=YMAXIND; i++) {
s = s + key[j];
s0 = internal_permutation[s&0xFF];
Y(i) = s = ROTL32(s, 8) ^ (u32)s0;
j = (j+1) mod keysizeb;

}

From the last part of the key setup given above, the following equation
is obtained to link the key bytes:

K.U. Leuven, ESAT/COSIC 27

3. Key Recovery Attacks (8)
Recovering the key

1) If three key bytes key[4], key[5], key[6] are guessed, then the one-bit
error in the above equation for other i’s can be computed recursively.

=> each equation leaks one-byte key information

2) From the values of and , we
obtain equations

So the maximum leaked key information is bytes
(the number of equations may be more than the number of key bytes
being involved, thus the actual leaked key information may be less)

K.U. Leuven, ESAT/COSIC 28

3. Key Recovery Attacks (9)
Recovering the key

1) For 16-byte key and 16-byte IV, 13 key bytes involved in 14 equations

=> recovering 13 key bytes

2) For 32-byte key and 32-byte IV, 29 key bytes involved in 46 equations

=> recovering 29 key bytes

K.U. Leuven, ESAT/COSIC 29

4. Security of Py6
Running the C code of Py6 with the 3-byte IV differences:

identical keystream pair appears with probability 2-11.45. (extremely weak)

with 27 chosen IVs
(set the 5th lsb of iv[i] and 6 least significant bits of iv[i+1] to all the values)
=> about 212 IV pairs
=> about one identical keystream pair

K.U. Leuven, ESAT/COSIC 30

5 TPy, TPy6 and TPypy
TPy, TPy6 and TPypy:

tweaks proposed by Biham and Seberry in 2007
main change: using the IV only once in the IV setup
secure against the attacks given in this presentation

more security analysis needed for the tweaked versions

K.U. Leuven, ESAT/COSIC 31

6 Conclusions
1. The initializations of Py, Pypy and Py6 are insecure

2. IV setup of stream cipher

To ensure that the IV setup is invertible to preclude attacks
based on internal collisions.

3. Similar problems:
ANSI Retail MAC, COMP-128, Hasty Pudding,
ABCvx (x<4),... and many more

K.U. Leuven, ESAT/COSIC 32

Thank you!

Q & A

	Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy
	eSTREAM – ECRYPT Stream Cipher Project
	eSTREAM Timeline http://www.ecrypt.eu.org/stream
	eSTREAM Submission status
	Overview
	1. Py, Pypy and Py6 (1)
	1. Py, Py6 and Pypy (2)
	1. Py, Py6 and Pypy (3)
	1. Py, Py6 and Pypy (4)
	1. Py, Py6 and Pypy (5)
	2. Identical Keystreams of Py, Pypy (1)
	2. Identical Keystreams of Py, Pypy (2)
	2. Identical Keystreams of Py, Pypy (3)
	2. Identical Keystreams of Py, Pypy (4)
	2. Identical Keystreams of Py, Pypy (5)
	2. Identical Keystreams of Py, Pypy (6)
	2. Identical Keystreams of Py, Pypy (7)
	2. Identical Keystreams of Py, Pypy (8)
	2. Identical Keystreams of Py, Pypy (9)
	3. Key Recovery Attacks (1)
	3. Key Recovery Attacks (2)
	3. Key Recovery Attacks (3)
	3. Key Recovery Attacks (4)
	3. Key Recovery Attacks (5)
	3. Key Recovery Attacks (6)
	3. Key Recovery Attacks (7)
	3. Key Recovery Attacks (8)
	3. Key Recovery Attacks (9)
	4. Security of Py6
	5 TPy, TPy6 and TPypy
	6 Conclusions

