An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries

Benny Pinkas
University of Haifa

Yehuda Lindell, Bar-Ilan University

Secure Two-Party Computation

Alice

Bob

Input: Output:

X

F(x,y) and nothing else

E.g., the millionaires problem

$$F(x,y) = 1 \text{ iff } x > y.$$

May 29, 2007 Eurocrypt 2007 page 2

Secure Two-Party Computation: security

Wish to have similar privacy, without the aid of a TTP.

May 29, 2007 Eurocrypt 2007 page 3

Possible scenarios

- Two parties vs. Multi-party
- Adversaries
 - Semi-honest: follow the protocol but try to learn more
 - Malicious: can do anything
 - It is easier to design solutions which are only good against semi-honest adversaries
- Yao [82,86]:
 - A generic protocol for two-party computation (of any function!) secure against semi-honest adversaries

This talk

- Securing Yao's protocol against malicious adversaries
- Using "cut-and-choose", unlike other solutions which use generic or number-theoretic ZK proofs
- Keeping it efficient
 - Similar computational overhead
 - Larger communication overhead ⊗

...This talk

- ...And proving security in the ideal/real simulation paradigm
 - This is the main motivation:
 - Implement a functionality (efficiently!) using our protocol
 - Use it as a primitive in more complex protocols
 - Analyze in the hybrid model (i.e., assuming a trusted party computes the functionality) [C]

• Example: computing the k'th ranked element [AMP]

May 29, 2007 Eurocrypt 2007 page 6

Theorem (stating our results)

- Constant-round black-box reduction of secure two-party computation (secure in the real/ideal model simulation paradigm against malicious parties) to
 - oblivious transfer
 - and perfectly hiding commitments
- Also, a black-box reduction to
 - oblivious transfer alone
 - with a number of rounds which is linear in a statistical security parameter.

Yao's Protocol for Generic secure two-party computation

- P₁ and P₂ wish to compute a function F, defined as a Binary circuit.
- P₁ (aka circuit constructor) constructs a Binary circuit computing F, and then garbles it.
- Garbled values:

 $k_i^0 = 0$ on wire i $k_i^1 = 1$ on wire i

P₂ will learn one string per wire, but not which bit it corresponds to.

Therefore doesn't learn intermediate values.

Bird's eye view of Yao's protocol

- P₁ defines garbled values for every wire
- P₁ constructs tables which enable to
 - compute the garbled output of a gate
 - given the garbled values of the gate's input wires
- Applying this to the entire circuit, it is possible to compute the circuit's output (and no internal value), given the garbled values of the circuit's input wires.
- It is also possible to let each player learn a different output

Running the protocol (semi-honest case)

- P₁ sends to P₂
 - Tables encoding each gate.
 - Garbled values (k's) of P₁'s input values.
- For every wire i of P₂'s input:
 - The parties run an oblivious transfer (OT) protocol
 - P_1 's input is k_i^0, k_i^1
 - P₂'s input is its input bit (b).
 - P₂ learns k_i^b
- Afterwards P₂ can compute the circuit by itself.
- Efficient for medium size circuits [Fairplay NMPS]
- Full proof (after modifications) against semi-honest adversaries [LP06]

Security against malicious adversaries

How can parties prove that they behave correctly?

- A zero-knowledge proof based on a reduction to an NP complete problem [GMW]
 - GMW's compiler
 - Generic, shows feasibility, non black-box, rather inefficient.
- 2. Prove correctness of the circuit gate-by-gate
 - Jarecki-Shmatikov (Eurocrypt '07).
 - More efficient than the reduction based approach, but still requires a ZK proof per gate.
 - ® instead of doing symmetric key operations per gate, we now have to do public key operations.
- 3. Cut-and-choose based solutions...

Malicious Behavior and Cut-and-Choose

- What can a malicious circuit constructor (P₁) do?
 - Can certainly construct a circuit which computes F' instead of F.
- Folk solution: "cut and choose"
 - P₁ constructs many circuits and commits to them.
 - P₂ asks P₁ to open a randomly chosen subset of the circuits, and checks that they are all correct.
 - The parties evaluate the remaining circuits.
- Intuition: An illegitimate circuit is identified whp.
 - But there are more problems...
- Efficiency: more copies of the circuit, but the computation does not change by much.

Cut-and-Choose based security for Yao's protocol

Mohassel-Franklin 2006

- Cut-and-choose based protocol against malicious adversaries.
- Cannot be fully proven in the ideal/real model paradigm.
- Only one party learns output; no output for the circuit constructor.
- Main issue (found by Kiraz-Schoenmakers)
 - P₁ can cheat in the OT protocol (where it is the sender):
 provides corrupt input to the 0 choice, and good input for 1.
 - If P₂'s input is 1 all checks go well.
 - If P₂'s input is 0, it must abort (and cannot complain)!
 - Checking the circuits does not help.
 - Therefore MF cannot be proven in the ideal/real model
 - KS suggest a solution using committing OT.

Our contributions

Efficient protocol for malicious parties

- A cut-and-choose based implementation of Yao's protocol.
- Both parties can have (possibly differing) outputs.
- Proof is complex but protocol is efficient:
 - Public key ops: only O(1) (regular) OTs per input bit.
 - Communication is multiplied by a statistical security parameter s (to obtain cheating probability $< 2^{-O(s)}$).

Simulation based proof

- Proof based on the real/ideal model simulation paradigm.
- Rather than separate proofs for privacy and correctness.
- The protocol can therefore be called by other protocols.
- Rest of talk: discuss the problems we encountered.

Basic Protocol

n-bit inputs. Statistical security parameter s.

- 1. The parties agree to a circuit C computing F(). P₁ constructs **s** garbled copies of C and commits to them.
- 2. P₂ uses OT to learn its garbled inputs to all circuits (only *n* OTs: one per input bit for all *s* garbled circuits).
- 3. P₁ sends the commitments to the circuits.
- 4. P₂ asks P₁ to open s/2 circuits, and verifies them.
- 5. If P₂ is happy, P₁ sends the garbled values of P₁'s inputs in the remaining s/2 circuits.
- 6. P₂ evaluates these circuits

But what happens if not all circuits have the same output?

Problem 1: Inconsistent outputs

- What should P₂ do if not evaluated circuits yield the same output?
 - P₁ definitely cheated, but should P₂ abort?
 - If P₂ aborts, it reveals information to P₁.
- Example: suppose P₂ aborts if outputs are inconsistent.
 - P₁ constructs s-1 circuits computing F.
 - One circuit computes F if and only if P2's input is 0.
 - With probability ½, P₁'s cheating is not detected in the first stage. Then P₂ aborts iff its input is not 0.
- Solution (providing exponential security):
 - P₂ computes the circuits, and outputs the same value as the majority of the circuits.
 - Intuition: In order to cheat, P₁ needs s/4 corrupt circuits,
 and none of them should be checked by P₂.

Problem 2: Input Consistency

- P₁ might provide different inputs (of P₁) to different circuits.
- Does this matter?
 - Suppose the parties compute the inner product. (Inputs are $X=x_1,...,x_s$ and $Y=y_1,...,y_s$, and $F(X,Y)=\sum_{i=1,...s} x_i \cdot y_i$.)
 - P₁ sets different inputs to different circuits: its input to the i'th circuit has x_i=1 and x_i=0 for j≠i.
 - Circuit i now outputs y_i . The majority result output by P_2 is therefore 1 iff the Hamming weight of Y > s/2.
- Solution: must verify consistency of P₁'s inputs.
- Problem 3: a simulation based proof of security (input extraction?).
- And many more issues...

Proving consistency of P₁'s inputs

- We use cut-and-choose to prove consistency of commitment sets of P₁'s inputs
 - And combine it with the cut-and-choose test used to prove consistency of circuits
 - (two "cut-and-choose"s)
- P₁ generates for each of its input wires s pairs of commitments sets. In each pair:
 - One set contains commitments to the garbled value of 0 for this wire, in all s circuits.
 - The other set contains commitments to the garbled value of 1 for this wire, in all s circuits.
 - The order of the pairs is random
 - P_2 receives a total of $n \cdot s \cdot s$ commitments

The commitment sets corresponding to P₁'s first input wire

Proving consistency of P₁'s inputs

- P₁ sends to P₂ the s garbled circuits and the n·s commitment sets
- The parties jointly pick random strings
 - ρ∈ {0,1}^s decides which circuits will be checked and which will be evaluated
 - − ρ'∈ {0,1}^s decides which commitment sets will be checked and which will be evaluated

P₁ opens in *checked sets* the commitments to values in *checked circuits*

Evaluation

P₁ opens the commitments in evaluation sets, for the garbled values of P₁'s input in evaluation circuits. P₂ verifies that these values are consistent (row wise and column wise).

Why does this prove consistency of P₁'s inputs?

- Suppose that P₁ wants an input bit to be 0 in circuit C_i and 1 in C_i.
 - If C_i and C_j are evaluated circuits then all evaluation sets must contain a commitment to 0 for C_i and a commitment to 1 for C_i.
 - If C_i and C_j are checked circuits then their values must be equal in all checked sets.
- Since P₂ outputs the majority result, P₁'s cheating is effective only if applied to > s/4 circuits.
 - Therefore P₁ must guess exactly which circuits and which sets will be checked ⇒ exponentially small success probability.

What about P₂'s inputs?

- Seems easy
 - P₂ uses OT to learn them
- But, P₁ can cheat in the OT protocol [KS]:
 - It can provide corrupt decommitment keys for the choice corresponding to a 0 input value, and good keys for 1.
 - If P₂'s input is 1 all checks go well.
 - If P₂'s input is 0, it cannot open the garbled values and must abort!

Preventing the OT attack

- An easy fix: Replace each of P₂'s input bits with the xor of s new input bits of P₂.
 - P₂ assigns to the new bits random values whose xor is the original input bit.
 - P₂ aborts if the decommitment keys to any bit are corrupt
 - P₂'s abort probability is almost independent of its input:
 - If P₁ corrupts < s new bits, the probability of P₂ aborting is *independent* of whether its original input is 0 or 1.
 - P₁ must corrupt s bits and gains advantage of 2^{-(s-1)} in guessing P₂'s input
- Caveat: Number of OTs multiplied by s.
 Solution: Use coding to replace n original bits with only 4n new ones.

Security definition

- Simulation of a real execution in the ideal model
 - Any admissible adversary in the real model can be simulated by an adversary in the ideal model
 - And therefore cannot learn more than is leaked in the ideal model.
 - The exact definition is more complex [C,G]
- Security is proved in the hybrid model, where the OT is implemented by a trusted party [C,G].

Choosing which circuits/sets to open

- This is done in order to check that P₁ is not cheating, so naturally P₂ can choose which commitments to open.
 - This is sufficient in order to handle a malicious P₁.
- However, in this case we don't know how to prove simulation in in case of a malicious P₂... (the proof requires to cheat P₂ in the simulation)
- The parties therefore run a joint coin-tossing protocol:
 - P_2 commits to a random ρ_2
 - P_1 commits to a random ρ_1
 - P_2 decommits and reveals ρ_2
 - P_1 decommits and reveals ρ_1
 - $-\rho = \rho_1 \oplus \rho_2$ is used to decide which circuits to open

OTs are done before the circuits commitments are sent to P₂

- This is done in order to enable us to prove security against a malicious P₂
 - In the simulation, we extract P₂'s input to F from its inputs to the OT.
 - We can send this value to the trusted party and learn the resulting output
 - Then, construct s/2 circuits which always output this value
 - And cheat in the joint coin flipping to ensure P₂ evaluates only these circuits
- This is the essence of the proof for the case P₂ is corrupt.

Security against a corrupt P₁

- Construct a simulator which gets access to the corrupt P₁ and to the trusted party, and emulates the behavior of a corrupt P₁ in a real execution:
 - Receive the circuit commitments from P₁
 - Run the protocol to obtain a random ρ (deciding which circuits are opened). Perform P₂'s checks.
 - Rewind, and run again with a different ρ^* .
 - Whp, there are many (> s/8) circuits which are checked in the first run and chosen to be evaluated in the second.
 - We can learn P₁'s input to these circuits. Since the checks before went well, whp this is the input of sufficiently many circuits.
 - We send this input X of P_1 to the TTP and learn F(X,Y).

Conclusions

- Security in the ideal/real simulation paradigm for Yao's protocol
 - The basic protocol structure is kept. More copies are sent, to perform cutand-choose. Several tweaks needed for the proof to go through.
 - The same number (order) of public key operations.
 - The proof is complicated but the protocol is efficient
 - O(1) public key operations per input bit, O(1) rounds.
 - $O(|C| \cdot s + n \cdot s^2)$ communication.
 - Woodruff shows how to use expanders to achieve O(|C|·s) communication for [MF]. Can probably also be applied here.
- THM: Constant-round black-box reduction of secure two-party computation to oblivious transfer and perfectly hiding commitments.
- Implementation?