An Efficient Protocol for Secure
Two-Party Computation in the
Presence of Malicious Adversaries

Benny Pinkas
University of Haifa

Yehuda Lindell, Bar-llan University

Secure Two-Party Computation

. P
A N

Alice - ‘f,/ Bob
Y

(S
it

Input: X
Output: F(X,y) and nothing else

E.g., the millionaires problem

F(x,y) = 1 iff x>y.

Secure Two-Party Computation: security

S
L

X
F(X,y) and nothing else

F(X,y) F(x.y)

Wish to have similar privacy, without the aid of a TTP.

Possible scenarios

- Two parties vs. Multi-party

- Adversaries
-~ Semi-honest: follow the protocol but try to learn more
— Malicious: can do anything

— It Is easier to design solutions which are only good
against semi-honest adversaries

- Yao [82,86]:

— A generic protocol for two-party computation (of any
function!) secure against semi-honest adversaries

This talk

 Securing Yao’s protocol against malicious adversaries

. Using “cut-and-choose”, unlike other solutions which
use generic or number-theoretic ZK proofs

- Keeping it efficient
— Similar computational overhead ©
— Larger communication overhead ®

... This talk

. ...And proving security in the ideal/real simulation
paradigm
— This is the main motivation:
- Implement a functionality (efficiently!) using our protocol

- Use it as a primitive in more complex protocols

- Analyze in the hybrid model (i.e., assuming a trusted
party computes the functionality) [C]

- Example: computing the k'th ranked element [AMP]

Theorem (stating our results)

- Constant-round black-box reduction of secure two-party
computation (secure Iin the real/ideal model simulation
paradigm against malicious parties) to
— oblivious transfer

— and perfectly hiding commitments

« Also, a black-box reduction to

— oblivious transfer alone

— with a number of rounds which is linear Iin a statistical
security parameter.

Yao’s Protocol for Generic secure two-party computation

- P, and P, wish to compute a function F, defined as a Binary circuit.

- P, (aka circuit constructor) constructs a Binary circuit computing F,
and then garbles it.

« Garbled values:

kO =0 on wire i
kl=1on wire i

P, will learn one
string per wire, but
not which bit it
corresponds to.

Therefore doesn'’t
learn intermediate
values.

Bird’s eye view of Yao’s protocol

- P, defines garbled values for every wire

- P, constructs tables which enable to
— compute the garbled output of a gate
— given the garbled values of the gate’s input wires

- Applying this to the entire circuit, it is possible to
compute the circuit’s output (and no internal value),
given the garbled values of the circuit’s input wires.

. It Is also possible to let each player learn a different
output

Running the protocol (semi-honest case)

- P, sends to P,
— Tables encoding each gate.
— Garbled values (k’s) of P,’s input values.
- For every wire 1 of P,’s input:
— The parties run an oblivious transfer (OT) protocol
- P,'s input is k k!
- P,’s input is its input bit (b).
- P, learns kP
- Afterwards P, can compute the circuit by itself.
. Efficient for medium size circuits [Fairplay - NMPS]

- Full proof (after modifications) against semi-honest
adversaries [LPO06]

Security against malicious adversaries

How can parties prove that they behave correctly?
1. A zero-knowledge proof based on a reduction to an NP
complete problem [GMW]
- GMW'’s compiler

— Generic, shows feasibility, non black-box, rather
Inefficient.

2. Prove correctness of the circuit gate-by-gate
— Jarecki-Shmatikov (Eurocrypt ‘07).

— More efficient than the reduction based approach, but still
requires a ZK proof per gate.

® instead of doing symmetric key operations per gate, we
now have to do public key operations.

3. Cut-and-choose based solutions...

Malicious Behavior and Cut-and-Choose

- What can a malicious circuit constructor (P,) do?

— Can certainly construct a circuit which computes F’ instead
of F.

- Folk solution: “cut and choose”
— P, constructs many circuits and commits to them.

- P, asks P, to open a randomly chosen subset of the
circuits, and checks that they are all correct.

— The parties evaluate the remaining circuits.

- Intuition: An illegitimate circuit is identified whp.
— But there are more problems...

- Efficiency: more copies of the circuit, but the
computation does not change by much.

Cut-and-Choose based security for Yao'’s protocol

- Mohassel-Franklin 2006
— Cut-and-choose based protocol against malicious adversaries.
— Cannot be fully proven in the ideal/real model paradigm.

— Only one party learns output; no output for the circuit
constructor.

- Main issue (found by Kiraz-Schoenmakers)

- P, can cheat in the OT protocol (where it is the sender):
provides corrupt input to the O choice, and good input for 1.

- If P,’s input is 1 all checks go well.

- If P,’s input is O, it must abort (and cannot complain) !
— Checking the circuits does not help.

— Therefore MF cannot be proven in the ideal/real model
— KS suggest a solution using committing OT.

Our contributions

- Efficient protocol for malicious parties
— A cut-and-choose based implementation of Yao’s protocol.
— Both parties can have (possibly differing) outputs.
— Proof is complex but protocol is efficient:
 Public key ops: only O(1) (regular) OTs per input bit.

- Communication is multiplied by a statistical security
parameter s (to obtain cheating probability < 2-06)).

- Simulation based proof
— Proof based on the real/ideal model simulation paradigm.

— Rather than separate proofs for privacy and correctness.
— The protocol can therefore be called by other protocols.

. Rest of talk: discuss the problems we encountered.

Basic Protocol

n-bit inputs. Statistical security parameter s.

The parties agree to a circuit C computing F(). P,
constructs s garbled copies of C and commits to them.

P, uses OT to learn its garbled inputs to all circuits
(only n OTs: one per input bit for all s garbled circuits).

P, sends the commitments to the circuits.
P, asks P, to open s/2 circuits, and verifies them.

If P, Is happy, P, sends the garbled values of P,’s
Inputs in the remaining s/2 circuits.

P, evaluates these circuits

But what happens if not all circuits have the same output?

Problem 1: Inconsistent outputs

- What should P, do if not evaluated circuits yield the
same output?

— P, definitely cheated, but should P, abort?
- If P, aborts, it reveals information to P,.
- Example: suppose P, aborts if outputs are inconsistent.
— P, constructs s-1 circuits computing F.
— One circuit computes F if and only if P,’s inputis O.

— With probability Y2, P,’s cheating Is not detected in the first
stage. Then P, aborts iff its input is not O.

. Solution (providing exponential security):

- P, computes the circuits, and outputs the same value as
the majority of the circuits.

— Intuition: In order to cheat, P, needs s/4 corrupt circuits,
and none of them should be checked by P..

Problem 2: Input Consistency

- P, might provide different inputs (of P,) to different
circuits.
- Does this matter?

— Suppose the parties compute the inner product. (Inputs
are X=Xy,...,Xs and Y=y,,....y,, and F(X,Y)=2i; < X+Yi.)

— P, sets different inputs to different circuits: its input to the
I'th circuit has x=1 and x;=0 for J=I.

— Circuit I now outputs y;. The majority result output by P, Is
therefore 1 iff the Hamming weight of Y > s/2.

- Solution: must verify consistency of P,’s inputs.

- Problem 3: a simulation based proof of security (input
extraction?).

- And many more issues...

Proving consistency of P,’s inputs

- We use cut-and-choose to prove consistency of
commitment sets of P,’s Inputs

— And combine it with the cut-and-choose test used to prove
consistency of circuits

— (two “cut-and-choose’s)
- P, generates for each of its input wires s pairs of
commitments sets. In each pair:

— One set contains commitments to the garbled value of O
for this wire, In all s circuits.

— The other set contains commitments to the garbled value
of 1 for this wire, in all s circuits.

— The order of the pairs is random
— P, receives a total of n-s-s commitments

The commitment sets corresponding to P,’s first
Input wire

circuit 1 circuit 2 circuit s

|]
% fv/same value

Wi, : iis wire index, j is set
| | \ index.

W 4, ={ com(1), com(k'; 1), com(k'i2), |..| co K’E'.-_Jr : b is wire value, jis wire
W'y = { com(0), com{k”1,1], Cgm(k01:2}! B 1 index, ris circuit index.

W 4 ={com(0), com{k 11) com ° 2} K’ }
W'y.1 ={com(1), com(k'1.4), com(k 1.2), ‘1,3 } Notation:
{ .

|

(k1.1), com{k 12
m(k 1.1) om(k's2)

Proving consistency of P,’s inputs

- P, sends to P, the s garbled circuits and the n-s
commitment sets

- The parties jointly pick random strings

- pe {0,1}® decides which circuits will be checked and
which will be evaluated

- p'e{0,1}° decides which commitment sets will be checked
and which will be evaluated

P, opens in checked sets the commitments to
values in checked circuits

ALUATIO
circyit 2

W 15 ={com(0), > gom(k’)} > gom(Kk’;2)\ .. ¢ : om(K’s)
wa={com(1), > feom(k’1), D> fpom(k's2), \.. fom(k'1s1)} [fecom(k'ys)
{ | |/

EVALUATION E.v 12={com(1), |com(k'ss), | lcom(k'sz), ..l |com(k'sc4),] com(k's <) }

SET

W1, = { com(0), mm(k”n} com(k’12), .. com{ K e1), | |com(k’ss)

I A

EVALUATION (W 44 {cum{ﬂ} cnm m{k‘ﬂ 5. com(k’ 1),/ \com(k“1 o)
SET W s ={ com(1 m(k'; 2), om(k's s1) 15]

Evaluation

- P, opens the commitments in evaluation sets, for the garbled
values of P,’s input in evaluation circuits. P, verifies that these
values are consistent (row wise and column wise).

LUATI
circyit 2
I

CHECK
circyit 1

CHECK *.! ALUATID

//

W 44 = { com(0),
W1 ={com(1),

CHECK
SET

0"”("-01.1)1
om(k'y 1),

OITI(KD1.2 B W—
com(k'sz), \...

Om{ko‘l.s—
com(k' ..

Om(kﬂ'l.s
Dm{k1 1.5 }

|

\/ | |

|

W 2 ={com(1),
W2 = { com(0),

comgk‘ui], 1.

Com(k’;.2), > .

com{k1 1,10
com(k’y 1),

com(k'ys.1),
com(k’ys.1),

com(k'yq) }
'Eﬁjnl{ .ELE _}:}}

EVALUATION
SET

\

[

EVALUATION

W ;s = { com(0),
=EX @n = { com(1),

“com(k’1,2).] -
0m(E11 2

[\
com{k”1.1}/ :
Om{k11 4

[\
com(k’s s}, dcom(k’s)P
mik's sA), m(k's <)}

Why does this prove consistency of P,’s inputs?

- Suppose that P, wants an input bit to be 0O in circuit C.
and 11inC.
- If C; and C; are evaluated circuits then all evaluation sets
must contain a commitment to O for C, and a commitment
to 1 for C,.

- If C, and C; are checked circuits then their values must be
equal In ali checked sets .

- Since P, outputs the majority result, P,’s cheating IS
effective only if applied to > s/4 circuits.
— Therefore P, must guess exactly which circuits and which

sets will be checked = exponentially small success
probability.

What about P,’s inputs?

- Seems easy
— P, uses OT to learn them

- But, P, can cheat in the OT protocol [KS]:

— It can provide corrupt decommitment keys for the choice
corresponding to a O input value, and good keys for 1.

- If P,’s input is 1 all checks go well.

- If P,’s input is O, it cannot open the garbled values and
must abort!

Preventing the OT attack

- An easy fix: Replace each of P,’s input bits with the xor
of s new input bits of P,,.
— P, assigns to the new bits random values whose xor Is the
original input bit.
— P, aborts Iif the decommitment keys to any bit are corrupt
— P,’s abort probability is almost independent of its input:

- If P, corrupts < s new bits, the probability of P, aborting is
Independent of whether its original input is O or 1.

« P, must corrupt s bits and gains advantage of 261 in
guessmg P,’s input

- Caveat. Number of OTs multiplied by s.

Solution: Use coding to replace n
original bits with only 4n new ones.

Security definition

- Simulation of a real execution In the ideal model

— Any admissible adversary in the real model can be
simulated by an adversary in the ideal model

— And therefore cannot learn more than is leaked in the ideal
model.

— The exact definition is more complex [C,G]

. Security Is proved in the hybrid model, where the OT Is
Implemented by a trusted party [C,G].

Choosing which circuits/sets to open

- This Is done in order to check that P, Is not cheating, so
naturally P, can choose which commitments to open.

— This Is sufficient in order to handle a malicious P,.

- However, In this case we don’t know how to prove

simulation in in case of a malicious P, ... (the proof
requires to cheat P, in the simulation)

- The parties therefore run a joint coin-tossing protocol:
« P, commits to a random p,

« P, commits to a random p,
- P, decommits and reveals p,
- P, decommits and reveals p;

- p= p;@p, IS used to decide which circuits to open

OTs are done before the circuits commitments
are sentto P,

- This Iis done In order to enable us to prove security
against a malicious P,

— In the simulation, we extract P,’s input to F from its inputs
to the OT.

— We can send this value to the trusted party and learn the
resulting output

— Then, construct s/2 circuits which always output this value

— And cheat in the joint coin flipping to ensure P, evaluates
only these circuits

- This Is the essence of the proof for the case P, is
corrupt.

Security against a corrupt P,

- Construct a simulator which gets access to the corrupt
P, and to the trusted party, and emulates the behavior
of a corrupt P, In a real execution:

— Receive the circuit commitments from P,

— Run the protocol to obtain a random p (deciding which
circuits are opened). Perform P,’s checks.

- Rewind, and run again with a different p*.

- Whp, there are many (> s/8) circuits which are checked in
the first run and chosen to be evaluated in the second.

— We can learn P,’s input to these circuits. Since the checks
before went well, whp this Is the input of sufficiently many
circuits.

— We send this input X of P, to the TTP and learn F(X,Y).

Conclusions

- Security in the ideal/real simulation paradigm for Yao’s protocol

— The basic protocol structure is kept. More copies are sent, to perform cut-
and-choose. Several tweaks needed for the proof to go through.

— The same number (order) of public key operations.

— The proof is complicated but the protocol is efficient
« O(1) public key operations per input bit, O(1) rounds.
« O(|C|-s + n-s?) communication.

- Woodruff shows how to use expanders to achieve O(|C|-s)
communication for [MF]. Can probably also be applied here.

- THM: Constant-round black-box reduction of secure two-party
computation to oblivious transfer and perfectly hiding
commitments.

- Implementation?

