CPK:
Bounded Identity Based Encryption

James Hughes
Guan Zhi
Identity Based Encryption

- Private matrix to the domain
- Private key to the user
- Public matrix
- Originally described as ECC based system
 > Equally valid in discrete log
- Does not require a bilinear map
- Patented
 > Publication Number WO/2006/074611
 > NAN, XiangHao
 > CHEN, Zhong
System Parameters

- Diffie Hellman group with values \((g, p)\)
- A matrix size \((m, n)\)
- A selection of row values are calculated from identity
 \[h_1 \ldots m = f(Identity) \]
- Public function
- SHA-256 or known encryption
Secret Matrix

\[S = \begin{bmatrix}
 s_{1,1} & \cdots & s_{1,m} \\
 \vdots & \ddots & \vdots \\
 s_{n,1} & \cdots & s_{n,m}
\end{bmatrix} \]

Private to domain
Secret Key

\[S = \begin{bmatrix}
 s_{1,1} & \cdots & s_{1,m} \\
 \vdots & \ddots & \vdots \\
 s_{n,1} & \cdots & s_{n,m}
\end{bmatrix} \]

Private to domain

\[S_A = \sum_{i=1}^{m} s_{h(i),i} \mod p - 1 \]

Private to user
Public Matrix

\[S = \begin{bmatrix}
 s_{1,1} & \cdots & s_{1,m} \\
 \vdots & \ddots & \vdots \\
 s_{n,1} & \cdots & s_{n,m}
\end{bmatrix} \]

Private to domain

\[P_{i,j} = g^{s_{i,j}} \mod p \]

Private to user

\[S_A = \sum_{i=1}^{m} s_{h(i),i} \mod p - 1 \]

Public to domain
Public Key

\[S = \begin{bmatrix} s_{1,1} & \cdots & s_{1,m} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \cdots & s_{n,m} \end{bmatrix} \]

Private to domain

\[P = \begin{bmatrix} p_{1,1} & \cdots & p_{1,m} \\ \vdots & \ddots & \vdots \\ p_{n,1} & \cdots & p_{n,m} \end{bmatrix} \]

Public to domain

\[S_A = \sum_{i=1}^{m} s_{h(i),i} \mod p - 1 \]

Private to user

\[P_A = \prod_{i=1}^{m} P_{h(i),i} \mod p \]

Public to domain

\[p_{i,j} = g^{s_{i,j}} \mod p \]
Questions

- Secure?
 > Public matrix reduces to the DDH

- Collisions?
 > 32x32 then h is 32x5 or 160 bits
 > Birthday after 2^{80} accounts

- Collusion
 > of near collision (one column different) provides difference
 > 32x32 requires ~1300 private keys.
Collusion Environment

- Without the threat of Collusion
 - Verification and not signature
 - Small matrix

- Without the threat of large scale collusion
 - Non personal equipment
 - Medium Matrix

- With the threat of large scale collusion
 - Authentication module (Chip card, USB token, TPM)
 - Large matrix

- Special Situations
 - One to ten million collusion partners
 - Ultra Large Matrix
• Is this novel?
 > Boneh Franklin
 > Murakami
 > Cocks
 > Heng, Kurosawa, CR-RSA 2004
 > Dodis, Katz, Xu, Yung, EC 2002

• Contact Jim or Guan later....