
Concurrent Signatures

Liqun Chen1, Caroline Kudla2∗ and Kenneth G. Paterson2†

liqun.chen@hp.com, {c.j.kudla, kenny.paterson}@rhul.ac.uk

1Hewlett-Packard Laboratories, Bristol, UK
2Information Security Group

Royal Holloway, University of London, UK

∗This author supported by Hewlett-Packard Laboratories.

†This author supported by the Nuffield Foundation NUF-NAL02.

EC04: Concurrent Signatures – p.1

Contents of this Talk

1. Introduction to Concurrent Signatures

2. Comparison to Fair Exchange of Signatures

3. Applications of Concurrent Signatures

4. Technical Approach

5. Concrete Concurrent Signatures Scheme

6. Security Models and Results

7. Extensions and Open Problems

8. Concluding Remarks

EC04: Concurrent Signatures – p.2

Introduction to Concurrent Signatures

A concurrent signature scheme is a signature scheme
where:
• Users can initially exchange non-binding

signatures that are somehow linked, and
• All signatures can concurrently be converted to full

binding signatures.
• Either no signatures are binding, or all signatures

are.

EC04: Concurrent Signatures – p.3

The Building Blocks

Ambiguous signatures:

• Could have been produced by either of two parties,

• Can convince other party but no-one else,

• E.g. Two party ring signatures, designated verifier signatures.

Keystone:

• Seed for a keystone fix,

• Release of keystone removes ambiguity.

EC04: Concurrent Signatures – p.4

How do Concurrent Signatures Work?

Suppose entities A and B wish to exchange signatures on messages
MA and MB respectively.

A B

k → keystone fix f

f → ambig. signature σA
σA−→

EC04: Concurrent Signatures – p.5

How do Concurrent Signatures Work?

Suppose entities A and B wish to exchange signatures on messages
MA and MB respectively.

A B

k → keystone fix f

f → ambig. signature σA
σA−→

B verifies σA

σB←− f → ambig. signature σB

EC04: Concurrent Signatures – p.5

How do Concurrent Signatures Work?

Suppose entities A and B wish to exchange signatures on messages
MA and MB respectively.

A B

k → keystone fix f

f → ambig. signature σA
σA−→

B verifies σA

σB←− f → ambig. signature σB

A verifies σB

A reveals k
k
−→

The pairs 〈σA, k〉 and 〈σB , k〉 are called concurrent signatures.

EC04: Concurrent Signatures – p.5

Fair Exchange of Signatures

Fair exchange of signatures allow mutually distrustful
parties to exchange signatures in a fair way.

Fair means: Either each party obtains the other’s
signature, or neither party does.

Two main approaches to fair exchange of signatures:

1. Timed release of signatures,

2. Solutions involving a trusted third party.

EC04: Concurrent Signatures – p.6

Applications of Concurrent Signatures

The Problem: A may never reveal the keystone to B.

But: Same keystone validates both A and B’s signatures, so either
signature with keystone validates other signature.

Existing mechanisms can guarantee delivery of keystone to B. So
concurrent signatures are applicable when:

EC04: Concurrent Signatures – p.7

Applications of Concurrent Signatures

The Problem: A may never reveal the keystone to B.

But: Same keystone validates both A and B’s signatures, so either
signature with keystone validates other signature.

Existing mechanisms can guarantee delivery of keystone to B. So
concurrent signatures are applicable when:

• A cannot withhold the keystone because she needs it to obtain a
service from B. (E.g. Computer Depot)

EC04: Concurrent Signatures – p.7

Applications of Concurrent Signatures

The Problem: A may never reveal the keystone to B.

But: Same keystone validates both A and B’s signatures, so either
signature with keystone validates other signature.

Existing mechanisms can guarantee delivery of keystone to B. So
concurrent signatures are applicable when:

• A cannot withhold the keystone because she needs it to obtain a
service from B. (E.g. Computer Depot)

• A cannot keep B’s signature private in the long term (E.g. Credit
card system).

EC04: Concurrent Signatures – p.7

Applications of Concurrent Signatures

The Problem: A may never reveal the keystone to B.

But: Same keystone validates both A and B’s signatures, so either
signature with keystone validates other signature.

Existing mechanisms can guarantee delivery of keystone to B. So
concurrent signatures are applicable when:

• A cannot withhold the keystone because she needs it to obtain a
service from B. (E.g. Computer Depot)

• A cannot keep B’s signature private in the long term (E.g. Credit
card system).

• A single third party C will verify both signatures (E.g. Politicians
and press)

EC04: Concurrent Signatures – p.7

Technical Approach

Ambiguous signature: Could be created by either of two parties.

Keystone: Converts ambiguous signature into full binding signature.

Approach:

EC04: Concurrent Signatures – p.8

Technical Approach

Ambiguous signature: Could be created by either of two parties.

Keystone: Converts ambiguous signature into full binding signature.

Approach:

1. Ring signatures have desired ambiguity properties.

EC04: Concurrent Signatures – p.8

Technical Approach

Ambiguous signature: Could be created by either of two parties.

Keystone: Converts ambiguous signature into full binding signature.

Approach:

1. Ring signatures have desired ambiguity properties.

2. Rivest et al. [RST01]: Signer can prove authorship by choosing
certain bits pseudorandomly, and later reveal the seed used.

EC04: Concurrent Signatures – p.8

Technical Approach

Ambiguous signature: Could be created by either of two parties.

Keystone: Converts ambiguous signature into full binding signature.

Approach:

1. Ring signatures have desired ambiguity properties.

2. Rivest et al. [RST01]: Signer can prove authorship by choosing
certain bits pseudorandomly, and later reveal the seed used.

We use the ring signature scheme of Abe et al. [AOS02] (an
adaptation of Schnorr signature scheme [S91]).

We call our seed a keystone, and use a cryptographic hash function to
create the keystone fix from the keystone.

EC04: Concurrent Signatures – p.8

Definition of Scheme

A concurrent signature scheme is a digital signature scheme
comprised of the following algorithms:

SETUP: On input a security parameter l, outputs the public
parameters, a function KGEN, and the participants’ public and private
keys.

ASIGN: A probabilistic algorithm that produces an ambiguous
signature on a message M .

AVERIFY: An algorithm which verifies an ambiguous signature.

VERIFY: An algorithm which takes a keystone and an ambiguous
signature, verifies the ambiguous signature, and tests whether the
keystone is valid.

EC04: Concurrent Signatures – p.9

The Concrete Scheme (1)

SETUP: On input a security parameter l:
• Select two large primes p and q s.t. q|p− 1.
• Select an element g ∈ Z

∗
p of order q.

• Set the message and keystone spacesM,K={0, 1}∗, the
signature and keystone fix spaces S,F ≡ Zq.

• Select two cryptographic hash functions H1, H2 : {0, 1}∗ → Zq

and set KGEN=H1.
• Select private keys xi ∈R Zq and set the public keys

Xi = gxi mod p.

EC04: Concurrent Signatures – p.10

The Concrete Scheme (2)

ASIGN: On input 〈Xi, Xj , xi, h2, M〉, pick random t ∈ Zq and compute:

h = H2(g
tXj

h2 mod p||M),

h1 = h− h2 mod q , s = t− h1xi mod q.

Output σ = 〈s, h1, h2〉.

AVERIFY: On input 〈σ, Xi, Xj , M〉 where σ = 〈s, h1, h2〉, verify the
equation

h1 + h2 = H2(g
sXh1

i Xh2

j mod p ||M) mod q

Output accept or reject.

EC04: Concurrent Signatures – p.11

The Concrete Scheme (3)

VERIFY: On input 〈k, S〉 where k ∈ K, S = 〈σ,Xi, Xj,M〉,
check if KGEN(k)= h2.
If not, output reject, otherwise run AVERIFY(S).

EC04: Concurrent Signatures – p.12

Security Model

Security is defined via the following notions:

Correctness: AVERIFY accepts signatures produced by ASIGN.

Unforgeability: The adversary should not be able to create
(ambiguous) signatures without the appropriate private key.

Ambiguity: The adversary should not be able to distinguish which of
two possible signers created an ambiguous signature.

Fairness: If two ambiguous signatures use the same keystone fix f ,
then a keystone will either convert both signatures into full
signatures, or neither.

EC04: Concurrent Signatures – p.13

Unforgeability Game

We define existential unforgeability of a concurrent signature scheme
under a chosen message attack using the following game between an
adversary E and a challenger C.

Setup: C runs SETUP for a security parameter l. E is given public
parameters and the public keys {Xi}. C retains the private keys {xi}.

Queries: E can make the following queries to C: KGen Queries,
KReveal Queries, ASign Queries, and Private Key Extract Queries.

EC04: Concurrent Signatures – p.14

Unforgeability Definition

Output: Finally E outputs a tuple σ = 〈s, h1, f〉 with public keys Xc, Xd, and message
M ∈ M. The adversary wins if AVERIFY(〈s, h1, f〉, Xc, Xd, M)= accept, and if either:

1. No ASign query on either 〈Xc, Xd, f, M〉 or 〈Xd, Xc, h1, M〉 was made by E, and
no Private Key Extract query was made on either Xc or Xd.

2. No ASign query on 〈Xc, Xi, f, M〉 was made for any Xi 6= Xc, Xi ∈ U , no Private
Key Extract query on Xc was made, and either f was a previous output from a
KGen query or E produces a keystone k such that f = KGEN(k).

Definition: A concurrent signature scheme is existentially
unforgeable under a chosen message attack if the probability of
success of any polynomially bounded adversary in the above game is
negligible.

EC04: Concurrent Signatures – p.15

Security Results

Theorem: Our concrete concurrent signature scheme is
existentially unforgeable under a chosen message attack in the
random oracle model, assuming the hardness of the discrete
logarithm problem.

Security results are also proved for the ambiguity and fairness
properties of the concrete scheme.

EC04: Concurrent Signatures – p.16

Extensions and Open Problems

• Extension to the multi-party case with appropriate
model of fairness.

EC04: Concurrent Signatures – p.17

Extensions and Open Problems

• Extension to the multi-party case with appropriate
model of fairness.

• To investigate methods whereby the revelation of
the keystone does not depend entirely on the initial
signer.

EC04: Concurrent Signatures – p.17

Conclusions

• Introduced the notion of concurrent signatures and
compared it to previous work,

• Discussed applications for concurrent signatures,
• Presented a concrete concurrent signature

scheme,
• Related the security of the concrete scheme to the

hardness of the discrete logarithm problem in an
appropriate security model.

EC04: Concurrent Signatures – p.18

Concurrent Signatures

Liqun Chen1, Caroline Kudla2∗ and Kenneth G. Paterson2†

liqun.chen@hp.com, {c.j.kudla, kenny.paterson}@rhul.ac.uk

1Hewlett-Packard Laboratories, Bristol, UK
2Information Security Group

Royal Holloway, University of London, UK

∗This author supported by Hewlett-Packard Laboratories.

†This author supported by the Nuffield Foundation NUF-NAL02.

EC04: Concurrent Signatures – p.19

		extcolor {darkblue}{Contents of this Talk}
		extcolor {darkblue}{Introduction to Concurrent Signatures}
		extcolor {darkblue}{ The Building Blocks}
		extcolor {darkblue}{How do Concurrent Signatures Work?}
		extcolor {darkblue}{ Fair Exchange of Signatures}
		extcolor {darkblue}{Applications of Concurrent Signatures}
		extcolor {darkblue}{ Technical Approach}
		extcolor {darkblue}{ Definition of Scheme}
		extcolor {darkblue} {The Concrete Scheme (1)}
		extcolor {darkblue} {The Concrete Scheme (2)}
		extcolor {darkblue} {The Concrete Scheme (3)}
		extcolor {darkblue} {Security Model}
		extcolor {darkblue} {Unforgeability Game}
		extcolor {darkblue} {Unforgeability Definition}
		extcolor {darkblue} {Security Results}
		extcolor {darkblue} {Extensions and Open Problems}
		extcolor {darkblue} {Conclusions}

