Practical Large-scale Distributed Key Generation

John Canny, Stephen Sorkin

{jfc,ssorkin}@cs.berkeley.edu

Computer Science Division

UC Berkeley

Motivation

- Homomorphism-based computation cheap and useful.
- Key generation the limiting factor.
- Broadcast not feasible.
- Result: Trade slight chance of failure for performance.

Outline

- Motivation
- Security model
- Threshold Cryptography Refresher
- Polynomial-based Key Generation
- Matrix-based Key Generation
- Sparse matrix-based Key Generation

Security Model

- Reliable point-to-point links.
- No broadcast channel (implement with Byzantine Agreement).
- Static adversary.
- Common stream of randomness.

Discrete Log Threshold Cryptography

- n players: P_1, \ldots, P_n .
- Each player has a share of the private key x.
- Any t + 1 able to sign or decrypt.
- Public keys g, g^x known to everyone.

Key Generation with a Dealer

- Dealer chooses degree t polynomial.
 (any t + 1 evaluation points allows for interpolation)
- Distribute f(i) to P_i .
- Define the secret to be x = f(0).
- With t+1 players we know $f(1), f(2), \ldots, f(t+1)$.
- Interpolate to find f(0).
- Compromising dealer will reveal key!

Requirements for DKG

Fewer than *t* adversarially controlled players. Correctness:

- (C1) All subsets of t + 1 shares provided by honest players define the same unique secret key x.
- (C2) All honest parties have the same value of the public key $y = g^x \mod p$, where x is the unique secret guaranteed by (C1).
- (C3) x is uniformly distributed in Z_q (and hence y is uniformly distributed in the subgroup generated by g).

Secrecy:

(S1) The adversary can learn no information about x except for what is implied by the value $y = g^x \mod p$.

Polynomial DKG

Pedersen91, GJKR99

- Each player, P_i , picks random degree t polynomial, f_i .
- P_i commits to the coefficients of f_i .
- P_i shares $f_i(j)$ with P_j .
- Define global secret poly $f(\cdot) \triangleq \sum_{\{i|i \text{ is valid}\}} f_i(\cdot)$.
- The secret key is f(0).
- Any t + 1 players can find f_i and hence f.

Efficiency of Polynomial DKG

For t = n/2, player P_i must:

- send O(n) point-to-point messages.
- broadcast O(n) commitments.
- receive $O(n^2)$ messages.
- check validity of *n* shares.

Polynomials as Matrices

The Vandermonde matrix makes polynomial evaluation the same as matrix multiplication.

$$V = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & & n \\ \vdots & \ddots & \vdots \\ 1 & 2^{m-1} & \cdots & n^{m-1} \end{bmatrix}$$

Premultiplying by row vector of coefficients yields row vector of evaluations.

Intuition

- What if P_i broadcasts to a much smaller group?
- Call this group Q_i , the checking group for P_i .
- For $n^{-\kappa}$ chance of failure, need $|Q_i| = \Omega(\kappa \log n)$.
- Only $n^{-\kappa+1}$ chance of failure for all groups.
- What about *P_i*'s secret?
- Shared with only $\Theta(\log n)$ players.
- If more than $\Theta(\log n)$ degrees of freedom, recovery impossible.

Requirements for DKG

With high probability, for threshold γ :

- (C1) All shares provided by honest players define the same unique secret key x, or no key at all.
- (C2) All honest parties have the same value of the public key $y = g^x \mod p$, where x is the unique secret guaranteed by (C1).
- (C3) x is uniformly distributed in Z_q (and hence y is uniformly distributed in the subgroup generated by g).
- (C4) Almost all subsets of $(\gamma + \epsilon)n$ players can recover the key.
- (S1) An adversary who corrupts fewer than $(\gamma \epsilon)n$ players can learn no information about x except for what is implied by the value $y = g^x \mod p$.

Sparse Secret, Sparse Matrix

Each secret has k consecutive non-zero elements.

- Premultiply by secret, get vector of $\sim 2k$ non-zero shares.
- Sum of secrets is the global secret.
- Sum of shares are shares of global secret.

Missing Shares

If only a subset of the shares can be used:

- Secret must still satisfy this smaller set of linear constraints.
- Are there enough to find the secret?

Recovery

When is recovery possible?

- Each column of the evaluation matrix represents one player's share.
- The sum of all players' secrets can be recovered if the submatrix has full rank.

Proof sketch

- Construct non-singular matrix incrementally as columns added.
- Failure if no more non-zero elements in a given row.
- We have ℓ chances to get a non-zero element.
- $\frac{1}{2} + \epsilon$ chance of getting any given column.
- Process identical to a reflecting random walk.

In practice (Band width)

In practice (Group size)

For $\epsilon = 1/10$:

What do we get?

- Broadcast to only $\Theta(\log n)$.
- Checking only $\Theta(\log n)$ other players.
- Slight chance of failure.
- Not as sharp threshold.