The Exact Price for Unconditionally Secure Asymmetric Cryptography

Renato Renner

ETH Zürich, Switzerland

Stefan Wolf

Université de Montréal, Canada

Overview

- Motivation
 - What is an asymmetrically secure secret key?
 - What is it good for?
- Main results
 - What is the price for an asymmetrically secure secret key?
 - What is the price for asymmetric security?

Facts about unconditionally secure message transmission

- "secure key" + "insecure channel" ⇒ "secret channel"
 (one-time pad)
- "secure key" + "insecure channel" ⇒ "authentic channel"
 (message authentication, e.g., based on two-universal hashing)

Consequently

• "secure key" + "insecure channel" ⇒ "secure channel"

Symmetrically secure secret key

Requirement

• $S_A = S_B = S$ (where S is ind. of adversary's knowledge).

Symmetrically secure secret key

Requirements

- $(V_A = \text{valid}) \lor (V_B = \text{valid}) \Longrightarrow S_A = S_B = S$ (S ind. of S').
- $S' = \perp \implies (V_A = \text{valid}) \land (V_B = \text{valid}).$

Symmetrically secure secret key

Notation: " $\frac{n}{n}$ "

Insecure communication channel

Notation: "

Secret channel

Notation: " n

Authentic channel

Requirements

- $V = \text{valid} \Rightarrow M' = M$
- $M' = \bot \implies V =$ valid.

Authentic channel

Notation: " n '

Facts about unconditionally secure message transmission

"secure key" + "insecure channel" ⇒ "secret channel"

$$n \rightarrow n \rightarrow n$$

"secure key" + "insecure channel" ⇒ "authentic channel"

$$n \rightarrow m \rightarrow m$$

(where $m \gg n$)

Consequently

"secure key" + "insecure channel" ⇒ "secure channel"

$$\stackrel{n}{\longrightarrow}$$
 $+$ $\stackrel{m}{\longrightarrow}$

(where $m \approx n$)

Asymmetrically secure secret key

Requirements

- $V_B = \text{valid} \implies S_A = S_B = S$ (S ind. of S').
- $S' = \perp \implies V_B = \text{valid}$.

Asymmetrically secure secret key

Notation: " $\frac{n}{n}$ "

Bob knows that

- his key is secret,
- Alice has the same key.

Application of asymmetric keys

Secret channel from A to B

Authentic channel from A to B

Secret channel from B to A

Authentic channel from B to A

$$n \rightarrow m$$

Application of asymmetric keys (bidirectional channels)

• Secrecy from A to B / Authenticity from B to A

• Authenticity from A to B / Secrecy from B to A

Observation

The price to realize _____ or ___ can be much lower than the price to realize _____.

Correlated information

Notation: " P_{XYZ} "

Correlated information

Types of correlation

- P_{XYZ} : general case (weakly correlated / only partially secret).
- P_{XXZ} : X and Y identical (fully correlated / only partially secret).
- P_{XY} : $Z = \bot$ (weakly correlated / fully secret).

Previous results I

Key agreement by authentic public discussion [Maurer93]

```
"correlation" + "authentic channels" \Rightarrow "secret key" (P_{XYZ})^m + \bullet - \bullet - \bullet - \bullet - \bullet upper bound: n \leq m \cdot I(X;Y \downarrow Z) lower bound: n \gtrsim m \cdot (I(X;Y) - \min\{I(X;Z),I(Y;Z)\}).
```

Key agreement by non-authentic public discussion

```
"correlation" + "insecure channels" \Rightarrow "secret key" (P_{XYZ})^m + \longrightarrow / \longrightarrow \longrightarrow n
```

characterized by simulatability condition.

Previous results II

• Privacy amplification over authentic channel

"insecure string"
$$+$$
 "authentic channel" \Rightarrow "secret key" P_{XXZ} $+$ \longrightarrow \Rightarrow \longrightarrow key length: $n \gtrsim H_{\infty}(X|Z)$ [BBR88, BBCM95].
$$(H_{\infty}(V) := -\log_2 \max_v P_V(v).)$$

Privacy amplification over non-authentic channel

```
"insecure string" + "insecure channel" \Rightarrow "secret key" P_{XXZ} + \longrightarrow \Rightarrow n
```

key length: $n \gtrsim H_{\infty}(X|Z)$ [RenWol03].

Main result: Arbitrary correlation / non-authentic channel

Generation of asymmetric key

"correlation"
$$+$$
 "insecure channel" \Rightarrow "secret key" P_{XYZ} $+$ \longrightarrow \Rightarrow n key length: $n \gtrsim H_{\infty}(Y|Z) - H_0(Y|X)$. $(H_0(V) := \log_2 |\{v : P_V(v) > 0\}|.)$

Generation of symmetric key

"correlation"
$$+$$
 "insecure channel" \Rightarrow "secret key" P_{XYZ} $+$ \Rightarrow n \Rightarrow key length: $n \gtrsim H_{\infty}(Y|Z) - H_0(Y|X) - H_0(X|Y)$.

Theorem

There exists a secret-key agreement protocol SKA such that

$$P_{XYZ} + \longrightarrow n$$

for
$$n \approx H_{\infty}(Y|Z) - H_0(Y|X)$$
.

Proof sketch

Known result: Privacy amplification over insecure channel

$$P_{YY\bar{Z}}$$
 + \Rightarrow m for $m \approx H_{\infty}(Y|\bar{Z})$.

Proof sketch

Known result: Privacy amplification over insecure channel

$$P_{YY\bar{Z}}$$
 + \Rightarrow m for $m \approx H_{\infty}(Y|\bar{Z})$.

Assume now that Alice holds Y' such that

- if the adversary is passive then Y = Y',
- Bob knows whether Y = Y'.

Then

$$P_{Y'Y\bar{Z}}$$
 + \Rightarrow m for $m \approx H_{\infty}(Y|\bar{Z})$.

Goal

Find information reconciliation protocol IR for transformation

$$P_{XYZ} + \longrightarrow P_{Y'Y\bar{Z}}$$

such that

- if the adversary is passive then Y = Y',
- Bob knows whether Y = Y',
- $H_{\infty}(Y|\bar{Z}) \gtrsim H_{\infty}(Y|Z) H_{0}(Y|X)$

(\overline{Z} : knowledge of adversary after execution of protocol IR).

Protocol IR (information reconciliation)

Alice

$$X \in \{0, 1\}^n$$

 $Y' \in \mathcal{Y}_X$ with

H(Y') = H(Y)

H, H(Y)

Bob

$$Y \in \{0, 1\}^n$$
 $H \in_R \mathcal{H}$
 $H : \{0, 1\}^n \to \{0, 1\}^d$

For $d \approx H_0(Y|X)$

- Y' = Y with high probability,
- $H_{\infty}(Y|ZC) \gtrsim H_{\infty}(Y|Z) H_{0}(Y|X)$.

Protocol IR' (information reconciliation / check)

 p_y is a function such that $\Pr[p_y(R) = p_{y'}(R)]$ small for $y \neq y'$ (e.g., a polynomial of degree n/k over $GF(2^k)$ depending on y).

Lemma (interactive authentication) [RenWol03].

Let r > 0. If $H_{\infty}(Y|\bar{Z})$ sufficiently large then AUTH realizes

$$P_{YY\bar{Z}}$$
 $+$ \Rightarrow r

Idea

Show that AUTH remains secure if $Y' \neq Y$.

Lemma (interactive authentication) [RenWol03].

Let r > 0. If $H_{\infty}(Y|\bar{Z})$ sufficiently large then AUTH realizes

$$P_{Y'Y\bar{Z}} + \longrightarrow r$$
 (for $Y' = Y$).

Idea

Setting:

- Alice holds Y'.
- Bob holds Y.
- Eve holds \bar{Z} such that $H_{\infty}(Y|\bar{Z})$ sufficiently large.
- Eve is allowed to arbitrarily interact with Alice and Bob.

To prove: Bob never accepts a message M' which is not sent by Alice.

Concluding remarks

Asymmetric result

There exists a secret key agreement protocol SKA such that

$$P_{XYZ} + \longrightarrow n$$

where $n \gtrsim H_{\infty}(Y|Z) - H_0(Y|X)$ (*).

Remarks

- SKA only depends on $H_{\infty}(Y|Z)$ and $H_{0}(Y|X)$.
- The resulting key size is optimal w.r.t. (*).
- SKA works for all distributions $P_{X'Y'Z'}$ such that $\delta(P_{XYZ}, P_{X'Y'Z'})$ is small for some P_{XYZ} satisfying (*).
- If $P_{XYZ} = P^m_{\bar{X}\bar{Y}\bar{Z}}$ (for large m) then (*) reduces to $n \approx m \cdot (H(\bar{Y}|\bar{Z}) H(\bar{Y}|\bar{X}))$ [CsiKoe78].

Concluding remarks

Applications in quantum cryptography

Quantum key agreement (key extension)

Concluding remarks

Applications in quantum cryptography

Asymmetric quantum key extension

$$\frac{r}{+} + \frac{\rho}{+} \Rightarrow \frac{n}{-}$$
(where $r \ll n$)

Correlation is sufficient ...

$$P_{XYZ}$$
 + ρ \Rightarrow n

$$(\text{for } H_{\infty}(Y|Z) - H_0(Y|X) > 0)$$

• ... even for the generation of a symmetric key

Questions?