
Efficient Private Matching
and Set Intersection

Mike Freedman, NYU

Kobbi Nissim, MSR
Benny Pinkas, HP Labs

EUROCRYPT 2004

Is there any chance we
might be compatible?

Maybe…

We could see if we have
similar interests?

I don’t really like to give
personal information

Have you heard of “secure
function evaluation” ?

I don’t want to waste
my entire night…

A Story…

We could see if we have
similar interests?

Have you heard of “secure
function evaluation” ?

I don’t want to waste
my entire night…

Making SFE more efficient…

1.Improvements to generic primitives (SFE, OT)

2.Improvements in specific protocol examples

X Y
F(x,y) and nothing else

Input:
Output:

X YAs if…

F(x,y) F(x,y)

Secure Function Evaluation

What if such trustworthy barkeeps don’t exist?

X Y

X Y

F(x,y)

Proving SFE Protocols…

Real
World

Ideal
World

� Views

Can consider semi-honest and malicious models

F(x,y)

Client Server

Input: X = x1 … xk Y = y1 … yk

Output: X ∩ Y only nothing

Our Specific Scenario

� Shared interests (research, music)
� Dating, genetic compatibility, etc.
� Credit card rating
� Terrorist watch list (CAPS II)

Related work
� Generic constructions [Yao,GMW,BGW,CCD]

� Represent function as a circuit with combinatorial gates
� Concern is size of circuit (as communication is O(|C|)
� Simplest uses k2 comparisons

� Diffie-Hellman based solutions [FHH99, EGS03]
� Insecure against malicious adversaries
� Considered in the “random oracle” model

� Our work: O(k ln ln k) overhead.
� “Semi-honest” adversaries – in standard model
� “Malicious” adversaries – in RO model

This talk…

� Overview

� Basic protocol in semi-honest model

� Efficient Improvements

� Extending protocol to malicious model

� Other results…

Basic tool: Homomorphic Encryption

� Semantically-secure public-key encryption

� Given Enc(M1), Enc(M2) can compute,

without knowing decryption key,

� Enc(M1+M2) = Enc(M1) � Enc(M2)

� Enc(c � M1) = [Enc(M1)] c , for any constant c

� Examples: El Gamal variant, Paillier, DJ

The Protocol
� Client (C) defines a polynomial of degree k

whose roots are his inputs x1,…,xk

P(y) = (x1-y)(x2-y)…(xk-y) = a0 + a1y +…+ akyk

� C sends to server (S) homomorphic
encryptions of polynomial’s coefficients

Enc(a0),…, Enc(ak)

Enc(P(y)) = Enc(a0 + a1 · y1 + … + ak · yk)

Enc(a0) · Enc (a1) y
1 · … · Enc (ak) y

k

The Protocol
� S uses homomorphic properties to compute,

∀y, ry � random

Enc(ry � P(y) + y)

� S sends (permuted) results back to C

� C decrypts results, identifies y’s

Enc (y) Enc (random)

if y ∈ X ∩ Y otherwise

Variant protocols…cardinality

Enc(ry � P(y) + 1)

� Computes size of intersection: # Enc (1)

� Others… Output 1 iff | X ∩ Y | > t

Enc (1) Enc (random)

if y ∈ X ∩ Y otherwise

Security (semi-honest case)

� Client’s privacy
� S only sees semantically-secure enc’s

� Learning about C’s input = breaking enc’s

� Server’s privacy (proof via simulation)

� Client gets X ∩ Y in ideal (TTP) model

� Given that, can compute E(y)’s and E(rand)’s and thus
simulate real model

Efficiency

� Communication is O(k)
� C sends k coefficients
� S sends k evaluations on polynomial

� Computation
� Client encrypts and decrypts k values
� Server:

� ∀y ∈ Y, computes Enc(ry�P(y)+y),
using k exponentiations

� Total O(k2) exponentiations

Improving Efficiency (1)

� Inputs typically from a “small” domain of D
values. Represented by log D bits (…20)

� Use Horner’s rule

P(y)= a0 + y (a1+…y (an-1+yan) ...)

� That is, exponents are only log D bits
� Overhead of exponentiation is linear in | exponent |

“Improve” by factor of | modulus | / log D
e.g., 1024 / 20 � 50

Improving Efficiency (2): Hashing

� C uses PRF H(·) to hash inputs to B bins

xkxk-1…x7x6x5x4x3x2x1

H(·)

B
M

� Let M bound max # of items in a bin

� Client defines B polynomials of deg M. Each poly
encodes x’s mapped to its bin + enough “other” roots

P2P1 P3 PB

…

Improving Efficiency (2): Hashing

HP2P1 P3 PB

� Client sends B polynomials and H to server.
� For every y, S computes H(y) and evaluates the

single corresponding poly of degree M

∀y, i � H(y), ry � rand

Enc(ry · Pi(y) + y)

Overhead with Hashing

� Communication: B � M (# bins � # items per)

� Server: k�M short exp�s, k full exp�s

(Pi(y)) (ry·Pi(y) + y)

� How to make M small as possible?

� Choose most balanced hash function

Balanced allocations [ABKU]

� H: Choose two bins,

map to emptier bin

� B = k / ln ln k

� M = O (ln ln k)

M ≤ 5 [BM]

� Communication: O(k)

� Server: k ln ln k short exp, k full exp in practice

xi

H(·)

This talk…

� Overview

� Basic protocol in semi-honest model

� Efficient Improvements

� Extending protocol to malicious model

� Other results…

Malicious Adversaries

� Malicious clients
� Without hashing is trivial: Ensure a0 � 0
� With hashing

� Verify that total # of roots (in all B poly’s) is k
� Solution using cut-and-choose
� Exponentially small error probability

� Still standard model

� Malicious servers
� Privacy…easy:

S receives semantically-secure encryptions

Security against Malicious Server

� Correctness: Ensure that there is an input
of k items corresponding to S’s actions

� Problem: Server can compute ry�P(y) + y’

� Solution: Server uses RO to commit to
seed, then uses resulting randomness to
“prove” correctness of encryption

∀y, s � rand, r � H1(s)

[e,h] � [Enc (r1·P(y) + s) , H2 (r2,y)]

s* � Dec (e), r* � H1(s*)

? ∃∃∃∃ x, s.t.
e = Enc (r*1·P(x) + s*) ∧∧∧∧ h = H2 (r*2, x)

Security against Malicious Server

Deterministic

Other results and open problems

� Approximating size of intersection (scalar product)
� Requires �(k) communication
� Provide secure approximation protocol

� PM protocol extends efficiently to multiple parties

� Malicious-party protocol in standard model?

� Fuzzy Matching?
� Databases are not always accurate or full
� Report iff entries match in t out of V “attributes”

Questions?

