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Is there any chance we 
might be compatible?

Maybe…

We could see if we have 
similar interests?

I don’t really like to give 
personal information

Have you heard of “secure
function evaluation” ?

I don’t want to waste 
my entire night…

A Story…



We could see if we have 
similar interests?

Have you heard of “secure
function evaluation” ?

I don’t want to waste 
my entire night…

Making SFE more efficient…

1.Improvements to generic primitives (SFE, OT)

2.Improvements in specific protocol examples



X Y
F(x,y) and nothing else

Input:
Output:

X YAs if…

F(x,y) F(x,y)

Secure Function Evaluation

What if such trustworthy barkeeps don’t exist?



X Y

X Y

F(x,y)

Proving SFE Protocols…

Real 
World

Ideal 
World

� Views

Can consider semi-honest and malicious models

F(x,y)



Client Server

Input: X = x1 … xk Y = y1 … yk

Output: X ∩ Y only nothing

Our Specific Scenario

� Shared interests (research, music)
� Dating, genetic compatibility, etc.
� Credit card rating
� Terrorist watch list (CAPS II)



Related work 
� Generic constructions [Yao,GMW,BGW,CCD]

� Represent function as a circuit with combinatorial gates
� Concern is size of circuit (as communication is O(|C|)
� Simplest uses k2 comparisons

� Diffie-Hellman based solutions [FHH99, EGS03]
� Insecure against malicious adversaries
� Considered in the “random oracle” model

� Our work: O(k ln ln k) overhead.
� “Semi-honest” adversaries – in standard model
� “Malicious” adversaries – in RO model



This talk…

� Overview

� Basic protocol in semi-honest model

� Efficient Improvements

� Extending protocol to malicious model

� Other results…



Basic tool: Homomorphic Encryption

� Semantically-secure public-key encryption

� Given Enc(M1), Enc(M2) can compute,

without knowing decryption key,

� Enc(M1+M2) = Enc(M1) � Enc(M2)

� Enc(c � M1) =  [Enc(M1)] c , for any constant c

� Examples: El Gamal variant, Paillier, DJ 



The Protocol
� Client (C) defines a polynomial of degree k 

whose roots are his inputs x1,…,xk

P(y) = (x1-y)(x2-y)…(xk-y)  = a0 + a1y +…+ akyk

� C sends to server (S) homomorphic
encryptions of polynomial’s coefficients

Enc(a0),…, Enc(ak)

Enc( P(y) ) = Enc( a0 + a1 · y1 + … + ak · yk ) 

Enc(a0) · Enc (a1) y
1 · … · Enc (ak) y

k



The Protocol
� S uses homomorphic properties to compute,

∀y, ry � random

Enc( ry � P(y) + y )

� S sends (permuted) results back to C

� C decrypts results, identifies y’s

Enc (y)   Enc (random)

if y ∈ X ∩ Y otherwise



Variant protocols…cardinality

Enc( ry � P(y) + 1 )

� Computes size of intersection:    # Enc (1)

� Others… Output 1  iff | X ∩ Y | >  t

Enc (1)   Enc (random)

if y ∈ X ∩ Y otherwise



Security (semi-honest case)

� Client’s privacy
� S only sees semantically-secure enc’s

� Learning about C’s input = breaking enc’s

� Server’s privacy (proof via simulation)

� Client gets X ∩ Y in ideal (TTP) model

� Given that, can compute E(y)’s and E(rand)’s and thus 
simulate real model



Efficiency

� Communication is O(k)
� C sends k coefficients
� S sends k evaluations on polynomial

� Computation
� Client encrypts and decrypts k values
� Server:

� ∀y ∈ Y,  computes Enc(ry�P(y)+y),
using k exponentiations

� Total O(k2) exponentiations 



Improving Efficiency (1)

� Inputs typically from a “small” domain of D 
values. Represented by log D bits (…20)

� Use Horner’s rule

P(y)= a0 + y (a1+…y (an-1+yan) ...)

� That is, exponents are only log D bits
� Overhead of exponentiation is linear in  | exponent |

“Improve” by factor of   | modulus |  / log D
e.g., 1024 / 20 � 50



Improving Efficiency (2):  Hashing

� C uses PRF H(·) to hash inputs to B bins

xkxk-1…x7x6x5x4x3x2x1

H(·)

B
M

� Let M bound max # of items in a bin

� Client defines B polynomials of deg M. Each poly 
encodes x’s mapped to its bin + enough “other” roots

P2P1 P3 PB

…



Improving Efficiency (2):  Hashing

HP2P1 P3 PB

� Client sends B polynomials and H to server. 
� For every y, S computes H(y) and evaluates the 

single corresponding poly of degree M

∀y,  i � H(y), ry � rand

Enc( ry · Pi(y) + y )



Overhead with Hashing

� Communication: B � M (# bins � # items per) 

� Server: k�M short exp�s,    k full exp�s

( Pi(y) )            ( ry·Pi(y) + y )

� How to make M small as possible?

� Choose most balanced hash function



Balanced allocations [ABKU]

� H: Choose two bins, 

map to emptier bin

� B = k / ln ln k   

� M = O (ln ln k) 

M ≤ 5  [BM]

� Communication:   O(k)

� Server:  k ln ln k short exp, k full exp in practice 

xi

H(·)



This talk…

� Overview

� Basic protocol in semi-honest model

� Efficient Improvements

� Extending protocol to malicious model

� Other results…



Malicious Adversaries

� Malicious clients
� Without hashing is trivial:  Ensure a0 � 0
� With hashing

� Verify that total # of roots (in all B poly’s) is k
� Solution using cut-and-choose
� Exponentially small error probability

� Still standard model

� Malicious servers
� Privacy…easy:

S receives semantically-secure encryptions



Security against Malicious Server 

� Correctness: Ensure that there is an input 
of k items corresponding to S’s actions

� Problem: Server can compute ry�P(y) + y’

� Solution: Server uses RO to commit to 
seed, then uses resulting randomness to 
“prove” correctness of encryption



∀y, s � rand, r � H1(s) 

[e,h] � [ Enc ( r1·P(y) + s ) ,  H2 (r2,y) ]

s* � Dec (e), r* � H1(s*) 

? ∃∃∃∃ x, s.t.
e = Enc ( r*1·P(x) + s* )    ∧∧∧∧ h = H2 (r*2, x) 

Security against Malicious Server 

Deterministic



Other results and open problems

� Approximating size of intersection (scalar product)
� Requires �(k) communication 
� Provide secure approximation protocol

� PM protocol extends efficiently to multiple parties

� Malicious-party protocol in standard model?

� Fuzzy Matching?
� Databases are not always accurate or full
� Report iff entries match in t out of V “attributes”



Questions?


