Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Jean-Sébastien Coron

Gemplus Card International

Issy-les-Moulineaux, France

Solving polynomial equations

Let p(x) be a polynomial and N an RSA modulus. Solving $p(x) = 0 \mod N$: hard problem : \bullet For $p(x) = x^2 - a$, equivalent to factoring N. \bullet For $p(x) = x^e - a$, equivalent to inverting RSA. Let f(x, y) be a polynomial with integer coefficients. Finding $(x_0, y_0) \in \mathbb{Z}^2$, $f(x_0, z_0) = 0$: hard problem. • Take $f(x, y) = N - x \cdot y$, equivalent to factoring N. Coppersmith showed (E96) that finding small roots is easy:

- Univariate modular case: $p(x) = 0 \mod N$.
- Bivariate integer case: f(x, y) = 0 over \mathbb{Z} .

Summary

Two distinct algorithms by Coppersmith:

- The univariate modular case: $p(x) = 0 \mod N$. • Simplified by Howgrave-Graham in 1997.
- The bivariate integer case: p(x, y) = 0 over \mathbb{Z} .
 - Algorithm still difficult to understand.
- New algorithm to solve the bivariate integer case:
 - Simplification analogous to [HG97] for the univariate case.
 - Easy to understand and implement.
- Application :
 - Factoring n = pq knowing the high-order bits of p.

Summary

Summary of Coppersmith's algorithms:

Problem	Solution [Cop96]	Simplification	
$f(x) = 0 \mod N$	Proven	[HG97]	
$f(x,y) = 0 \mod N$	Heuristic	[HG97]	
$f(x,y)=0$ over $\mathbb Z$	Proven	this talk	

Finding a proof for $f(x, y) = 0 \mod N$ is still an open problem.

Solving $p(x) = 0 \mod N$

Coppersmith's theorem:

- Given an integer N and a polynomial p(x) such that deg $p = \delta$, one can find in polynomial time all integer x_0 such that $p(x_0) = 0 \mod N$ and $|x_0| \leq N^{1/\delta}$.
- Based on LLL lattice reduction algorithm.
- Numerous applications in cryptography:
 - Cryptanalysis of plain RSA encryption when some part of the message is known :
 - ✓ If $c = (B + x_0)^3 \mod N$, let $p(x) = (B + x)^3 c$ and recover x_0 if $x_0 < N^{1/3}$.

Solving $x^2 + ax + b = 0 \mod N$.

Illustration with a polynomial of degree 2:

• Let
$$p(x) = x^2 + ax + b \mod N$$
.

 \bullet We must find x_0 such that $p(x_0) = 0 \mod N$ and $|x_0| < X$.

- We generate a linear integer combination h(x) of the polynomials :
 - \blacklozenge p(x), Nx and N.

01/05/04

- Then $h(x_0) = 0 \mod N$.
- If the coefficients of h(x) are small enough :
 - Then $|h(x_0)| < N$ and $h(x_0) = 0$ must hold over \mathbb{Z} . This enables to recover x_0 .

Howgrave-Graham lemma

Given
$$h(x) = \sum h_i x^i$$
, let $||h||^2 = \sum h_i^2$.

Howgrave-Graham lemma :

♦ Let $h \in \mathbb{Z}[x]$ be a sum of at most ω monomials. If $h(x_0) = 0 \mod N$ with $|x_0| \le X$ and $||h(xX)|| < N/\sqrt{\omega}$, then $h(x_0) = 0$ holds over \mathbb{Z} .

01/05/04 7/27 Bull & Innovatron Patents Finding Small Roots of Bivariate Integer Polynomial Equations Revisited **GEMPLUS**

Building the lattice

The coefficients of h(xX) must be small:

(h(xX) is a linear integer combination of the polynomials

$$p(xX) = X^2 \cdot x^2 + aX \cdot x + b$$

$$q_1(xX) = NX \cdot x$$

$$q_2(xX) = N$$

We must find a small integer linear combination of the vectors:

$$igert$$
 $[X^2, aX, b]$, $[0, NX, 0]$ and $[0, 0, N]$

Tool: LLL algorithm.

Building the lattice

We must find a small linear integer combination h(xX) of the polynomials p(xX), xXN and N.

Let L be the corresponding lattice, with a basis of row vectors :

$$\begin{array}{cccc} X^2 & aX & b \\ & NX \\ & & N \end{array}$$

• Using LLL, one can find a lattice vector b of norm : $\|b\| \le 2(\det L)^{1/3} \le 2N^{2/3}X$

Then if $X < N^{1/3}/4$, then ||h(xX)|| = ||b|| < N/2Howgrave-Graham lemma applies and $h(x_0) = 0$.

Solving $p(x) = 0 \mod N$

- The previous bound gives $|x_0| \leq N^{1/3}/4$.
 - But Coppersmith's bound gives $|x_0| \leq N^{1/2}$.
- One obtains Coppersmith's bound by using more multiples of p(x) and working modulo N^{ℓ} :
 - Let q_{ik}(x) = xⁱ · N^{ℓ-k}p^k(x) mod N^ℓ
 p(x₀) = 0 mod N ⇒ p^k(x₀) = 0 mod N^k ⇒ q_{ik}(x₀) = 0 mod N^ℓ.
 Then h(x₀) = 0 mod N^ℓ.
 If the coefficients of h(x) are small enough, then
 - $h(x_0) = 0$ and one can recover x_0 using any standard root-finding algorithm.

The bivariate integer case

- Solving p(x, y) = 0 seems to be hard.
 - Integer factorization is a special case: take $p(x, y) = N x \cdot y$.
- Coppersmith's showed (E96) that finding small roots is easy :
 - Let $p(x, y) \in \mathbb{Z}[x, y]$ has a maximum degree δ independently in x, y, and let $W = \max |p_{ij}| X^i Y^j$.
 - ♦ If $XY < W^{2/(3\delta)}$ one can find in polynomial time all integer pairs (x_0, y_0) such that $p(x_0, y_0) = 0$, $|x_0| \le X$ and $|y_0| \le Y$.
 - Based on the LLL algorithm.

The bivariate integer case

- But Coppersmith's algorithm is difficult to understand.
 - It uses non full-rank lattices, which makes determinant computation tedious.
- Our contribution : a new algorithm for solving p(x, y) = 0.
 - Simplification analogous to Howgrave-Graham for the univariate case.
 - Easy to understand and implement.
 - But asymptotically less efficient than Coppersmith's algorithm.

Approach: solving p(x, y) = 0

Let $q(x, y) = p_{00}^{-1} p(x, y) \mod n$ for some integer n. Find a small integer linear combination h(x, y) of the polynomials $x^i y^j q(x, y)$ and $x^i y^j n$. $ightarrow q(x_0, y_0) = 0 \mod n \Rightarrow h(x_0, y_0) = 0 \mod n.$ If the coefficients of h(x, y) are sufficiently small : (1) $h(x_0, y_0) = 0$ using Howgrave-Graham lemma. \diamond 2) h(x, y) cannot be a multiple of p(x, y). **Then since** p(x, y) is irreducible : $\mathbf{Q}(x) = \mathsf{Resultant}_{y}(h(x, y), p(x, y))$ is such that $Q \neq 0$ and $Q(x_0) = 0$. • This gives x_0 and finally y_0 by solving $p(x_0, y) = 0$.

01/05/04 13/27 Bull & Innovatron Patents

An illustration

Example with p(x, y) = a + bx + cy + dxy.

- Assume that $a \neq 0$ and $d \neq 0$.
- Find (x_0, y_0) such that $p(x_0, y_0) = 0$.
- ♦ $W = ||p(xX, yY)||_{\infty} = \max\{|a|, |b|X, |c|Y, |d|XY\},$ where $|x_0| \le X$ and $|y_0| \le Y$.
- Generate n such that $W \le n < 2W$ and gcd(n, a) = 1
 - Define $q_{00}(x, y) = a^{-1}p(x, y) \mod n$, $q_{00}(x, y) = 1 + b'x + c'y + d'xy \mod n$
 - Define $q_{10}(x, y) = nx$, $q_{01}(x, y) = ny$ and $q_{11}(x, y) = n$.
 - We have $q_{ij}(x_0, y_0) = 0 \mod n$.

Lattice of polynomials

Let h(x, y) be a linear combination of the $q_{ij}(x, y)$. \bullet Then $h(x_0, y_0) = 0 \mod n$

$$L = \begin{bmatrix} 1 & b'X & c'Y & d'XY \\ & nX & & \\ & & nY & \\ & & & nY & \\ & & & & nXY \end{bmatrix}$$

Using LLL, one obtains h(x, y) such that: • $||h(xX, yY)|| < 2 \cdot (\det L)^{1/4} < 2n^{3/4} (XY)^{1/2}$ • If $XY < n^{1/2}/16$, then ||h(xX, yY)|| < n/2. HG lemma applies, and $h(x_0, y_0) = 0$.

01/05/04 15/27**Bull & Innovatron Patents** Finding Small Roots of Bivariate Integer Polynomial Equations Revisited *GEMPLUS*

Solving p(x, y) = 0

 $\|h(xX, yY)\| < n/2 \le \|p(xX, yY)\|_{\infty} \le \|p(xX, yY)\|_{\infty}$ If h(x, y) was a multiple of p(x, y). • Then $h(x, y) = \lambda \cdot p(x, y)$ with $\lambda \in \mathbb{Z}^*$ • We would have $||h(xX, yY)|| \ge ||p(xX, yY)||$. $\Rightarrow h(x, y)$ cannot be a multiple of p(x, y). $p(x_0, y_0) = h(x_0, y_0) = 0$ and p(x, y) is irreducible. \diamond One can recover (x_0, y_0) by taking the resultant. **This works if** $XY < W^{1/2}/16 < W^{2/3}$. \blacklozenge By adding more multiples of q(x, y) in the lattice, one recovers Coppersmith's bound.

Solving p(x, y) = 0

Theorem :

- Let $p(x, y) \in \mathbb{Z}[x, y]$ has a maximum degree δ independently in x, y, and let $W = \max |p_{ij}|X^iY^j = \|p(xX, yY)\|_{\infty}$.
- If $XY < W^{2/(3\delta)-\varepsilon}$ for some $\varepsilon > 0$, one can find in polynomial time all integer pairs (x_0, y_0) such that $p(x_0, y_0) = 0$, $|x_0| \le X$ and $|y_0| \le Y$.
- Asymptotically weaker than Coppersmith's theorem
 - which only assumes $XY < W^{2/(3\delta)}$.
 - Our algorithm is not polynomial for this weaker bound.

Solving p(x, y) = 0

Let $p(x, y) = p_{00} + \sum p_{ij} x^i y^j$ of degree δ . • Assume first that $p_{00} \neq 0$ and $gcd(p_{00}, XY) = 1$. \bullet Let k > 0 be a parameter. • Generate $n = (XY)^k \cdot u$, where $u \simeq \|p(xX, yY)\|_{\infty}$ • Let $q(x, y) = p_{00}^{-1} \cdot p(x, y) \mod n$ • Then $q(x,y) = 1 + \sum_{(i,j) \neq (0,0)} a_{ij} x^i y^j$ We form the polynomials $q_{ij}(x,y)$: $q_{ij}(x,y) = x^i y^j X^{k-i} Y^{k-j} q(x,y),$ for $0 \le i, j \le k$. • $q_{ij}(x,y) = x^i y^j n$, for $(i,j) \in [0, \delta + k]^2 \setminus [0, k]^2$. $q_{ij}(x_0, y_0) = 0 \mod n \text{ and } (XY)^k | q_{ij}(xX, yY).$

Lattice of polynomials

- Lattice formed by the coefficient vectors of the polynomials $q_{ij}(xX, yY)$.
 - Full-rank lattice of dimension $\omega = (\delta + k + 1)^2$.
 - Illustration for $q(x, y) = 1 + a_{10}x + a_{01}y + a_{11}xy$ and k = 1.

	1	x	y	xy	x^2	x^2y	y^2	xy^2	x^2y^2
XYq	XY	$a_{10}X^2Y$	$a_{01}XY^2$	$a_{11}X^2Y^2$					
Yxq		XY		$a_{01}XY^2$	$a_{10}X^2Y$	$a_{11}X^2Y^2$			
Xyq			XY	$a_{10}X^2Y$			$a_{01}XY^2$	$a_{11}X^2Y^2$	
xyq				XY		$a_{10}X^2Y$		$a_{01}XY^2$	$a_{11}X^2Y^2$
x^2n					X^2n				
x^2yn						X^2Yn			
y^2n							Y^2n		
xy^2n								XY^2n	
x^2y^2n									X^2Y^2n

Size of h(x, y)

- We want the coefficients of h(xX, yY) to be small enough, for the following two reasons :
- 1) If the coefficients of h(xX, yY) are small enough :
 - Then $h(x_0, y_0) = 0$ holds not only modulo n, but also over \mathbb{Z} (Howgrave-Graham's lemma).
 - The condition is $||h(xX, yY)|| < \frac{n}{\sqrt{\omega}}$.

01/05/04

- **2)** If the coefficients of h(xX, yY) are small enough : • Then h(x, y) cannot be a multiple of p(x, y).
 - The condition is $||h(xX, yY)|| < 2^{-\omega} \cdot (XY)^k \cdot W$
- From the definition of n, the first condition is satisfied when the second is satisfied.

Size of the factors of polynomials

Mignotte's bound :

• Let $f, g \in \mathbb{Z}[x]$ and $\deg f = k$.

• If f divides g in $\mathbb{Z}[x]$, then $||g|| \ge 2^{-k} \cdot ||f||_{\infty}$.

Extension to bivariate polynomials :

• Let $a, b \in \mathbb{Z}[x, y]$ of degree less than d independently in x, y.

• If a divides b in $\mathbb{Z}[x, y]$, then $||b|| \ge 2^{-(d+1)^2} \cdot ||a||_{\infty}$

Proof: let $f(x) = a(x, x^{d+1})$ and $g(x) = b(x, x^{d+1})$.

• Then f divides g and $\deg f \leq (d+1)^2$.

- $||f||_{\infty} = ||a||_{\infty}$ and ||g|| = ||b||.
- \blacklozenge Apply Mignotte's bound to f and g.

Size of h(x, y)

If h(x,y) was a multiple of p(x,y):

Then h(xX, yY) is a multiple of $(XY)^k \cdot p(xX, yY)$.

♦ From the previous lemma, this would give: $\|h(xX, yY)\| \ge 2^{-\omega} \cdot (XY)^k \cdot W$

Conversely, if $||h(xX, yY)|| < 2^{-\omega} \cdot (XY)^k \cdot W$:

• h(x,y) can not be a multiple of p(x,y).

• One recovers (x_0, y_0) by taking the resultant.

Using LLL, we obtain a non-zero h(x, y) such that :

 $\bullet \|h(xX, yY)\| \le 2^{(\omega-1)/4} \cdot \det(L)^{1/\omega}$

Make sure that :

 $2^{(\omega-1)/4} \cdot \det(L)^{1/\omega} < 2^{-\omega} \cdot (XY)^k \cdot W.$

The bound for XY

 \blacksquare We obtain the following condition on XY. • $XY < 2^{-\beta}W^{\alpha}$ • where $\alpha = \frac{2}{3\delta} - \frac{2}{3\cdot(k+1)}$ and $\beta = \frac{4k^2}{\delta} + 13\cdot\delta$. **Taking** $k = \lfloor 1/\varepsilon \rfloor$, we obtain : $\bullet XY < W^{2/(3\delta) - \varepsilon} \cdot 2^{-4/(\delta \cdot \varepsilon^2) - 13\delta}$ • The algorithm is polynomial in $(\log W, \delta, 1/\varepsilon)$. If $XY < W^{2/(3\delta)-\varepsilon}$ We exhaustively search the high-order $4/(\delta \cdot \varepsilon^2) + 13\delta$ bits of x_0 . \bullet For a fixed ε , the running time is polynomial in $(\log W, 2^{\delta}).$

Comparison with Coppersmith

Difference in lattice dimension :

- Coppersmith's algorithm works with a *d*-dimensional lattice over \mathbb{Z}^{ω} , where $d = \delta^2 + 2(k+1)\delta$ and $\omega = (\delta + k + 1)^2$
- \blacklozenge We work with a full-rank lattice over \mathbb{Z}^{ω}
- Our algorithm is asymptotically less efficient than Coppersmith's:
 - It is polynomial-time under the condition $XY < W^{2/(3\delta)-\varepsilon}$.
 - Instead of $XY < W^{2/(3\delta)}$.

Application to factoring

Let $N = p \cdot q$ and assume that we know the half high-order bits of p.

Define the polynomial:

$$p(x,y) = (p_0 + x)(q_0 + y) - N$$

= $(p_0q_0 - N) + q_0x + p_0y + xy$

Then (x₀, y₀) is a small root of p(x, y).
 Using the previous theorem, one can recover (x₀, y₀) in polynomial time.

01/05/04 25/27 Bull & Innovatron Patents Finding Small Roots of Bivariate Integer Polynomial Equations Revisited **GEMPLUS**

Practical experiments

Using Shoup's NTL library, on a 733MHz PC under Linux :

N	bits of p given	lattice dimension	running time
512 bits	144 bits	25	35 sec
512 bits	141 bits	36	3 min
1024 bits	282 bits	36	20 min

Using the simplification of Howgrave-Graham for the particular case of factoring with high-bits known :

N	bits of p given	lattice dimension	running time
1024 bits	282 bits	11	1 sec
1024 bits	266 bits	25	1 min
1536 bits	396 bits	33	19 min

• This simplification does not apply to the general case of finding small roots of p(x, y) = 0.

01/05/04 26/27 Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Conclusion

A new algorithm for finding small roots of p(x, y) = 0.

- Simpler than Coppersmith's algorithm, but asymptotically less efficient.
- The bivariate integer case is now as simple to analyze and implement as the univariate modular case.
- Experiments show that the algorithm works well in practice.
 - But for the particular case of integer factorization with high-bits known, the Howgrave-Graham simplification appears to be more efficient.

