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Solving polynomial equations

B Let p(x) be a polynomial and N an RSA modulus.
Solving p(x) =0 mod N: hard problem :

or p(z) = z* — a, equivalent to factoring V.
~or p(xz) = x° — a, equivalent to inverting RSA.

B Let f(x,y) be a polynomial with integer coefficients.
Finding (zo, 0) € Z*, f(x0,20) = 0 : hard problem.

Take f(x,y) = N —x -y, equivalent to factoring V.

B Coppersmith showed (E96) that finding small roots
IS easy:
Univariate modular case: p(x) =0 mod N.
Bivariate integer case: f(x,y) = 0 over Z.
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Summary

B Two distinct algorithms by Coppersmith:

The univariate modular case: p(x) =0 mod N.
Simplified by Howgrave-Graham in 1997.

The bivariate integer case: p(x,y) = 0 over Z.
Algorithm still difficult to understand.
B New algorithm to solve the bivariate integer case:

Simplification analogous to [HG97/] for the
univariate case.

Easy to understand and implement.

B Application :
Factoring n = pq knowing the high-order bits of p.

-
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Summary

B Summary of Coppersmith’s algorithms:

Problem Solution [Cop96] | Simplification
f(x) =0 mod N Proven [HGI7]
f(x,y) =0 mod N Heuristic [HGI7]
f(x,y) =0 over Z Proven this talk

B Finding a proof for f(z,y) =0 mod N is still an
open problem.
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Solving p(x) = 0 mod NN

B Coppersmith’s theorem:

Given an integer N and a polynomial p(x) such
that deg p = ¢, one can find in polynomial time all
integer x, such that p(xy) =0 mod N and

|ZEO| S N1/5.
Based on LLL lattice reduction algorithm.
B Numerous applications in cryptography:

Cryptanalysis of plain RSA encryption when
some part of the message Is known :

If c= (B +x9)° mod N, letp(z) = (B+1z)°—c
and recover z if o < N1/3,

-
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Solving 2 +ax +b =0 mod NN.

B lllustration with a polynomial of degree 2 :
Let p(z) = 2> + ax + b mod N.
We must find x( such that p(zy) = 0 mod N and
o < X.
B We generate a linear integer combination A (x) of the
polynomials :
p(x), Nx and N.
Then h(zy) =0 mod N.

M If the coefficients of h(z) are small enough :
Then |A(xg)| < N and h(xg) = 0 must hold over Z.
This enables to recover zy.

-
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Howgrave-Graham lemma

B Given h(z) =" ha', let [|h]]? =Y b,
B Howgrave-Graham lemma :

Let h € Z|z] be a sum of at most w monomials. If
h(zg) =0 mod N with |zy| < X and
|h(zX)|| < N/+/w, then h(xy) = 0 holds over Z.

00000000
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Building the lattice

B The coefficients of h(xX) must be small:

h(xX) is a linear integer combination of the
polynomials

p(xX) = X? 24+ aX -+
p(xX) = NX -z
@p(xX) = N

B We must find a small integer linear combination of
the vectors:

(X? aX,b], [0, NX,0] and [0,0, N]
B Tool: LLL algorithm.

-
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Building the lattice

B We must find a small linear integer combination
h(xX) of the polynomials p(zX), x XN and N.

Let L be the corresponding lattice, with a basis of

row vectors : _ _
X? aX b

NX

N

Using LLL, one can find a lattice vector b of norm :
1b]| < 2(det L)Y/? < 2N?3X

B Thenif X < N'/3/4, then ||h(zX)| = ||b|| < N/2
Howgrave-Graham lemma applies and h(zy) = 0.

-
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Solving p(x) = 0 mod NN

B The previous bound gives |zy| < N'/3/4.
But Coppersmith’s bound gives |zo| < N1/2.
B One obtains Coppersmith’s bound by using more
multiples of p(x) and working modulo N*:
Let gix(x) = 2° - N“FpF(z) mod N*
p(xg) =0 mod N = p*(x¢) =0 mod N*
= g¢ir(29) =0 mod N*.
Then h(zy) =0 mod N*.

If the coefficients of h(x) are small enough, then
h(xo) = 0 and one can recover x, using any
standard root-finding algorithm.

-
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The bivariate integer case

B Solving p(z,y) = 0 seems to be hard.
Integer factorization Is a special case: take
p(z,y) =N —z-y.
B Coppersmith’s showed (E96) that finding small roots
IS easy :
Let p(x,y) € Z|x,y] has a maximum degree )
independently in z,y, and let W = max |p;;| X'Y".

If XY < W?2/39) gne can find in polynomial time all
integer pairs (xg, yo) such that p(zg, yo) = 0,
o] < X and [yo| < Y.

Based on the LLL algorithm.

-

00000000 11/27 L Lo . . . .
Bull & Innovatron Patents Finding Small Roots of Bivariate Integer Polynomial Equations Revisited f,’:; GEMPLUS



The bivariate integer case

B But Coppersmith’s algorithm is difficult to
understand.

It uses non full-rank lattices, which makes
determinant computation tedious.

B Our contribution : a new algorithm for solving
p(z,y) = 0.
Simplification analogous to Howgrave-Graham for
the univariate case.

Easy to understand and implement.

But asymptotically less efficient than
Coppersmith’s algorithm.
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Approach: solving p(x,y) =0

_et q(x,y) = pyg p(x,y) mod n for some integer n.

~ind a small integer linear combination h(x,y) of the
polynomials =y’ q(z,y) and x'y/n.

q(xo, %) =0 mod n = h(xg,y9) =0 mod n.
B If the coefficients of h(z,y) are sufficiently small :
1) h(xg,y0) = 0 using Howgrave-Graham lemma.
2) h(x,y) cannot be a multiple of p(x, y).

B Then since p(z,y) is irreducible :

Q(x) = Resultant,(h(z,y), p(z,y)) IS such that

Q # 0and Q(xg) = 0.
This gives x, and finally yo by solving p(x,y) = 0.

-
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An Illustration

B Example with p(z,y) = a + bx + cy + dxy.
Assume that a # 0 and d # 0.
Find (xg, y9) such that p(zg, yo) = 0.
W = |lp(zX, yY)| o = max{]al, |b| X, |c]Y, |d]| XY},
where |zy| < X and |yy| <.
B Generate n such that W < n < 2W and gcd(n,a) =1
Define qyo(z,y) = a 'p(z,y) mod n,
qoo(z,y) =1+ b+ dy+dry modn
Define ¢1o(x,y) = nx, qo1(x,y) = ny and

C.hl(xa y) — N.
We have ¢;;(zo,y0) =0 mod n.

-
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Lattice of polynomials

B Let h(z,y) be a linear combination of the ¢;;(z, y).
Then h(zy,yp) =0 mod n

1 ¥X JY dXY |
nX
ny
nXY

B Using LLL, one obtains h(z,y) such that:
h(zX,yY)|| <2 (det L)V* < 2p3/4(XY)1/?
f XY < n'/2/16, then ||h(zX,yY )| < n/2.

HG lemma applies, and A (xg, yg) = 0.
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Solving p(xz,y) = 0

B |h(zX,yY)| <n/2 < |p(aX,yY)][x < [lp(zX, yY)|
B If h(z,y) was a multiple of p(z, y).

Then h(x,y) = X - p(x,y) with X\ € Z*

We would have ||h(z X, yY)|| > ||p(zX,yY)]|.

= h(x,y) cannot be a multiple of p(z,y).

B p(zo,y0) = h(xo,yo) = 0 and p(x,y) is irreducible.
One can recover (xg, yy) by taking the resultant.

B This works if XY < W2/16 < W?/3,

By adding more multiples of ¢(z, y) in the lattice,
one recovers Coppersmith’s bound.

-
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Solving p(xz,y) = 0

B Theorem:

Let p(x,y) € Z|x,y] has a maximum degree )
Independently in z, y, and let
W = max [p| X'Y7 = [p(@X, yY )|

If XY < W2/39)-¢ for some ¢ > 0, one can find in
polynomial time all integer pairs (zg, yy) such that
p(xo, yo) = 0, <Y.

B Asymptotically weaker than Coppersmith’s theorem

which only assumes XY < W2/(39),

Our algorithm is not polynomial for this weaker
bound.
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Solving p(xz,y) = 0

B Let p(z,y) = poo + 2 pijx'y’ of degree 4.
Assume first that pyy # 0 and ged(pgg, XY) = 1.
Let £ > 0 be a parameter.

Generate n = (XY)* - u, where u ~ ||p(2 X, yY)||s
Let q(z,y) = pyy - p(z,y) mod n
Then g(z,y) =1+ Z(i,j);ﬁ(o,()) aijajiyj

B We form the polynomials ¢;;(z,y) :
qij(z,y) = 'y XY gz, y), for 0 < i, j < k.
qii(z,y) = x'y’n, for (i,5) € [0, + k]*\ [0, k]*.
qii(zo,0) =0 mod n and (XY)*|q;;(zX,yY).
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Lattice of polynomials

B Lattice formed by the coefficient vectors of the
polynomials ¢;;(z X, yY).

—ull-rank lattice of dimension w = (§ + k + 1)2.

llustration for q(z,y) = 1 + a9z + ap1y + a2y and

k=1.

1 x Y Ty z? 2y 1> xy? x?y?
XYq | XY a1 oX?Y anXY? a X?Y?
Y xq XY anXY? a0 XY a;1 X?Y?
Xyq XY a0 X%Y ann XY? ap; X?Y?
xYq XY aioX2%Y anXY? a X%Y?
’n Xn
z2yn X%Yn
y’n Y2n
zy’n XY?n
z2y’n X2%Yn

-
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Size of h(x, y)

B We want the coefficients of h(z X, yY') to be small
enough, for the following two reasons :

m ) If

T
a

.
m 2 If

the coefficients of h(z X, yY) are small enough :

nen h(zg, yo) = 0 holds not only modulo n, but
so over Z (Howgrave-Graham’s lemma).

ne condition is ||h(xz X, yY )| < NS

the coefficients of h(z X, yY') are small enough :

Then h(x,y) cannot be a multiple of p(x, y).
The condition is ||h(z X, yY)| < 27% - (XY)* - W

B From the definition of n, the first condition iIs satisfied
when the second Is satisfied.

00000000
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Size of the factors of polynomials

B Mignotte’s bound :
Let f,g € Z|x] and deg f = k.

If £ divides g in Z[z], then [|g]| > 27% - || f]|sc.

B Extension to bivariate polynomials

Let a,b € Z|x,y| of degree less than d
Independently in x, .

If a divides b in Z[z, y], then ||b]| > 27D . ||a]|
B Proof: let f(z) = a(x, z%) and g(x) = b(x, 241
Then f divides g and deg f < (d + 1)

1 lloe = [lalloc @and |lg]| = [[0]I-
Apply Mignotte’s bound to f and g.
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Size of h(x, y)

B If h(z,y) was a multiple of p(z,y)
Then h(zX,yY) is a multiple of (XY )* . p(z X, yY).
From the previous lemma, this would give:
|h(@ X, yY)|| = 27 - (XY)F- W

B Conversely, if [|h(zX,yY)|| <279 - (XY)* - W:
h(x,y) can not be a multiple of p(x, y).

One recovers (xg, yy) by taking the resultant.

B Using LLL, we obtain a non-zero h(x,y) such that :
|A(2X,yY )| < 27D/ det(L)Y/=
Make sure that :

W=D/ det (L)Y < 279 - (XY)F - W,
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The bound for XY

B We obtain the following condition on XY'.

XY < 27°9)7@

where o = = 3(k+1 and g =% 113 6.
B Taking k£ = |1/¢], we obtain :

XY < 72/(30)—¢ . 9—4/(5%)—130

The algorithm is polynomial in (log W, §,1/¢).
B If XY < W2/30)—¢

We exhaustively search the high-order
4/(6 - €2) + 134 bits of .

For a fixed ¢, the running time is polynomial in

00000000
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Comparison with Coppersmith

B Difference In lattice dimension :

Coppersmith’s algorithm works with a
d-dimensional lattice over Z“, where
d=6+2k+1dandw = (§ + k + 1)
We work with a full-rank lattice over Z“
B Our algorithm Is asymptotically less efficient than
Coppersmith’s:
It Is polynomial-time under the condition
XY < W?2/(30)—¢
Instead of XY < W?2/(39),

-
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Application to factoring

B Let N =p-qand assume that we know the half
high-order bits of p.

B Write p = py+ 20 and g = qy + yp.
po and gy are known.
20| < N4 and |y < N/

B Define the polynomial:

p(z,y) = (po+x)(@+y) —N
(Pogo — N) + qor + poy + =y

Then (xzq, 1) is a small root of p(z, y).
Using the previous theorem, one can recover

(20, yo) In polynomial time.
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B Using Shoup’s NTL library, on a 733MHz PC under

Practical experiments

Linux :
N bits of p given lattice dimension running time
512 bits 144 bits 25 35 sec
512 bits 141 bits 36 3 min
1024 bits 282 bits 36 20 min
B Using the simplification of Howgrave-Graham for the
particular case of factoring with high-bits known :
N bits of p given lattice dimension running time
1024 bits 282 bits 11 1 sec
1024 bits 266 bits 25 1 min
1536 bits 396 bits 33 19 min

This simplification does not apply to the general

case of finding small roots of p(x,y) = 0.
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Conclusion

B A new algorithm for finding small roots of p(z,y) = 0.

Simpler than Coppersmith’s algorithm, but
asymptotically less efficient.

The bivariate integer case is now as simple to
analyze and implement as the univariate modular
case.

B Experiments show that the algorithm works well in
practice.

But for the particular case of integer factorization
with high-bits known, the Howgrave-Graham
simplification appears to be more efficient.

-
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