Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Jean-Sébastien Coron

Gemplus Card International
Issy-les-Moulineaux, France

Solving polynomial equations

\square Let $p(x)$ be a polynomial and N an RSA modulus. Solving $p(x)=0 \bmod N$: hard problem :
For $p(x)=x^{2}-a$, equivalent to factoring N.

- For $p(x)=x^{e}-a$, equivalent to inverting RSA.
- Let $f(x, y)$ be a polynomial with integer coefficients. Finding $\left(x_{0}, y_{0}\right) \in \mathbb{Z}^{2}, f\left(x_{0}, z_{0}\right)=0$: hard problem. Take $f(x, y)=N-x \cdot y$, equivalent to factoring N.
■ Coppersmith showed (E96) that finding small roots is easy:Univariate modular case: $p(x)=0 \bmod N$.
Bivariate integer case: $f(x, y)=0$ over \mathbb{Z}.

Summary

\square Two distinct algorithms by Coppersmith:
The univariate modular case: $p(x)=0 \bmod N$. \checkmark Simplified by Howgrave-Graham in 1997.
The bivariate integer case: $p(x, y)=0$ over \mathbb{Z}.
Algorithm still difficult to understand.

- New algorithm to solve the bivariate integer case:
- Simplification analogous to [HG97] for the univariate case.
- Easy to understand and implement.
- Application :
- Factoring $n=p q$ knowing the high-order bits of p.

Summary

■ Summary of Coppersmith's algorithms:

Problem	Solution [Cop96]	Simplification
$f(x)=0 \bmod N$	Proven	[HG97]
$f(x, y)=0 \bmod N$	Heuristic	[HG97]
$f(x, y)=0$ over \mathbb{Z}	Proven	this talk

\square Finding a proof for $f(x, y)=0 \bmod N$ is still an open problem.

Solving $p(x)=0 \bmod N$

■ Coppersmith's theorem:
Given an integer N and a polynomial $p(x)$ such that $\operatorname{deg} p=\delta$, one can find in polynomial time all integer x_{0} such that $p\left(x_{0}\right)=0 \bmod N$ and $\left|x_{0}\right| \leq N^{1 / \delta}$.

- Based on LLL lattice reduction algorithm.
- Numerous applications in cryptography:
- Cryptanalysis of plain RSA encryption when some part of the message is known :
\checkmark If $c=\left(B+x_{0}\right)^{3} \bmod N$, let $p(x)=(B+x)^{3}-c$ and recover x_{0} if $x_{0}<N^{1 / 3}$.

Solving $x^{2}+a x+b=0 \bmod N$.

■ Illustration with a polynomial of degree 2 :
Let $p(x)=x^{2}+a x+b \bmod N$.

- We must find x_{0} such that $p\left(x_{0}\right)=0 \bmod N$ and $\left|x_{0}\right| \leq X$.
- We generate a linear integer combination $h(x)$ of the polynomials :
$p(x), N x$ and N.
- Then $h\left(x_{0}\right)=0 \bmod N$.
- If the coefficients of $h(x)$ are small enough :

Then $\left|h\left(x_{0}\right)\right|<N$ and $h\left(x_{0}\right)=0$ must hold over \mathbb{Z}.
This enables to recover x_{0}.

Howgrave-Graham Iemma

■ Given $h(x)=\sum h_{i} x^{i}$, let $\|h\|^{2}=\sum h_{i}^{2}$.
■ Howgrave-Graham lemma:
Let $h \in \mathbb{Z}[x]$ be a sum of at most ω monomials. If $h\left(x_{0}\right)=0 \bmod N$ with $\left|x_{0}\right| \leq X$ and $\|h(x X)\|<N / \sqrt{\omega}$, then $h\left(x_{0}\right)=0$ holds over \mathbb{Z}.

Building the lattice

- The coefficients of $h(x X)$ must be small:
- $h(x X)$ is a linear integer combination of the polynomials

$$
\begin{aligned}
p(x X) & =X^{2} \cdot x^{2}+a X \cdot x+b \\
q_{1}(x X) & =N X \cdot x \\
q_{2}(x X) & =N
\end{aligned}
$$

- We must find a small integer linear combination of the vectors:

$$
\left[X^{2}, a X, b\right],[0, N X, 0] \text { and }[0,0, N]
$$

- Tool: LLL algorithm.

Building the lattice

- We must find a small linear integer combination $h(x X)$ of the polynomials $p(x X), x X N$ and N.
Let L be the corresponding lattice, with a basis of row vectors :

$$
\left[\begin{array}{ccc}
X^{2} & a X & b \\
& N X & \\
& & N
\end{array}\right]
$$

- Using LLL, one can find a lattice vector b of norm : $\|b\| \leq 2(\operatorname{det} L)^{1 / 3} \leq 2 N^{2 / 3} X$
- Then if $X<N^{1 / 3} / 4$, then $\|h(x X)\|=\|b\|<N / 2$
- Howgrave-Graham lemma applies and $h\left(x_{0}\right)=0$.

Solving $p(x)=0 \bmod N$

■ The previous bound gives $\left|x_{0}\right| \leq N^{1 / 3} / 4$.

- But Coppersmith's bound gives $\left|x_{0}\right| \leq N^{1 / 2}$.

■ One obtains Coppersmith's bound by using more multiples of $p(x)$ and working modulo N^{ℓ} :
Let $q_{i k}(x)=x^{i} \cdot N^{\ell-k} p^{k}(x) \bmod N^{\ell}$

- $p\left(x_{0}\right)=0 \bmod N \Rightarrow p^{k}\left(x_{0}\right)=0 \bmod N^{k}$ $\Rightarrow q_{i k}\left(x_{0}\right)=0 \bmod N^{\ell}$.
Then $h\left(x_{0}\right)=0 \bmod N^{\ell}$.
- If the coefficients of $h(x)$ are small enough, then $h\left(x_{0}\right)=0$ and one can recover x_{0} using any standard root-finding algorithm.

The bivariate integer case

\square Solving $p(x, y)=0$ seems to be hard.

- Integer factorization is a special case: take $p(x, y)=N-x \cdot y$.
\square Coppersmith's showed (E96) that finding small roots is easy :
Let $p(x, y) \in \mathbb{Z}[x, y]$ has a maximum degree δ independently in x, y, and let $W=\max \left|p_{i j}\right| X^{i} Y^{j}$.
- If $X Y<W^{2 /(3 \delta)}$ one can find in polynomial time all integer pairs $\left(x_{0}, y_{0}\right)$ such that $p\left(x_{0}, y_{0}\right)=0$, $\left|x_{0}\right| \leq X$ and $\left|y_{0}\right| \leq Y$.
Based on the LLL algorithm.

The bivariate integer case

■ But Coppersmith's algorithm is difficult to understand.

- It uses non full-rank lattices, which makes determinant computation tedious.
■ Our contribution : a new algorithm for solving $p(x, y)=0$.
- Simplification analogous to Howgrave-Graham for the univariate case.
- Easy to understand and implement.
- But asymptotically less efficient than Coppersmith's algorithm.

Approach: solving $p(x, y)=0$

\square Let $q(x, y)=p_{00}^{-1} p(x, y) \quad \bmod n$ for some integer n.
■ Find a small integer linear combination $h(x, y)$ of the polynomials $x^{i} y^{j} q(x, y)$ and $x^{i} y^{j} n$.

$$
q\left(x_{0}, y_{0}\right)=0 \bmod n \Rightarrow h\left(x_{0}, y_{0}\right)=0 \bmod n .
$$

- If the coefficients of $h(x, y)$ are sufficiently small :

1) $h\left(x_{0}, y_{0}\right)=0$ using Howgrave-Graham lemma. 2) $h(x, y)$ cannot be a multiple of $p(x, y)$.
\square Then since $p(x, y)$ is irreducible :

- $Q(x)=\operatorname{Resultant}_{y}(h(x, y), p(x, y))$ is such that $Q \neq 0$ and $Q\left(x_{0}\right)=0$.
This gives x_{0} and finally y_{0} by solving $p\left(x_{0}, y\right)=0$.

An illustration

■ Example with $p(x, y)=a+b x+c y+d x y$.
Assume that $a \neq 0$ and $d \neq 0$.
Find $\left(x_{0}, y_{0}\right)$ such that $p\left(x_{0}, y_{0}\right)=0$.
$-W=\|p(x X, y Y)\|_{\infty}=\max \{|a|,|b| X,|c| Y,|d| X Y\}$, where $\left|x_{0}\right| \leq X$ and $\left|y_{0}\right| \leq Y$.

- Generate n such that $W \leq n<2 W$ and $\operatorname{gcd}(n, a)=1$

Define $q_{00}(x, y)=a^{-1} p(x, y) \bmod n$,
$q_{00}(x, y)=1+b^{\prime} x+c^{\prime} y+d^{\prime} x y \bmod n$
Define $q_{10}(x, y)=n x, q_{01}(x, y)=n y$ and
$q_{11}(x, y)=n$.
We have $q_{i j}\left(x_{0}, y_{0}\right)=0 \bmod n$.

Lattice of polynomials

- Let $h(x, y)$ be a linear combination of the $q_{i j}(x, y)$.

Then $h\left(x_{0}, y_{0}\right)=0 \bmod n$

$$
L=\left[\begin{array}{llll}
1 & b^{\prime} X & c^{\prime} Y & d^{\prime} X Y \\
& n X & & \\
& & n Y & \\
& & & n X Y
\end{array}\right]
$$

■ Using LLL, one obtains $h(x, y)$ such that:

$$
\|h(x X, y Y)\| \leq 2 \cdot(\operatorname{det} L)^{1 / 4} \leq 2 n^{3 / 4}(X Y)^{1 / 2}
$$

$$
\text { If } X Y<n^{1 / 2} / 16 \text {, then }\|h(x X, y Y)\|<n / 2 \text {. }
$$

HG lemma applies, and $h\left(x_{0}, y_{0}\right)=0$.

Solving $p(x, y)=0$

■ $\|h(x X, y Y)\|<n / 2 \leq\|p(x X, y Y)\|_{\infty} \leq\|p(x X, y Y)\|$

- If $h(x, y)$ was a multiple of $p(x, y)$.
- Then $h(x, y)=\lambda \cdot p(x, y)$ with $\lambda \in \mathbb{Z}^{*}$
- We would have $\|h(x X, y Y)\| \geq\|p(x X, y Y)\|$. $\Rightarrow h(x, y)$ cannot be a multiple of $p(x, y)$.
■ $p\left(x_{0}, y_{0}\right)=h\left(x_{0}, y_{0}\right)=0$ and $p(x, y)$ is irreducible.
\checkmark One can recover $\left(x_{0}, y_{0}\right)$ by taking the resultant.
- This works if $X Y<W^{1 / 2} / 16<W^{2 / 3}$.
- By adding more multiples of $q(x, y)$ in the lattice, one recovers Coppersmith's bound.

Solving $p(x, y)=0$

\square Theorem:

Let $p(x, y) \in \mathbb{Z}[x, y]$ has a maximum degree δ independently in x, y, and let
$W=\max \left|p_{i j}\right| X^{i} Y^{j}=\|p(x X, y Y)\|_{\infty}$.
If $X Y<W^{2 /(3 \delta)-\varepsilon}$ for some $\varepsilon>0$, one can find in polynomial time all integer pairs $\left(x_{0}, y_{0}\right)$ such that $p\left(x_{0}, y_{0}\right)=0,\left|x_{0}\right| \leq X$ and $\left|y_{0}\right| \leq Y$.
■ Asymptotically weaker than Coppersmith's theorem which only assumes $X Y<W^{2 /(3 \delta)}$.
Our algorithm is not polynomial for this weaker bound.

Solving $p(x, y)=0$

- Let $p(x, y)=p_{00}+\sum p_{i j} x^{i} y^{j}$ of degree δ.

Assume first that $p_{00} \neq 0$ and $\operatorname{gcd}\left(p_{00}, X Y\right)=1$.

- Let $k \geq 0$ be a parameter.

Generate $n=(X Y)^{k} \cdot u$, where $u \simeq\|p(x X, y Y)\|_{\infty}$ Let $q(x, y)=p_{00}^{-1} \cdot p(x, y) \bmod n$

- Then $q(x, y)=1+\sum_{(i, j) \neq(0,0)} a_{i j} x^{i} y^{j}$
- We form the polynomials $q_{i j}(x, y)$:

$$
\begin{aligned}
& q_{i j}(x, y)=x^{i} y^{j} X^{k-i} Y^{k-j} q(x, y), \text { for } 0 \leq i, j \leq k . \\
& q_{i j}(x, y)=x^{i} y^{j} n \text {, for }(i, j) \in[0, \delta+k]^{2} \backslash[0, k]^{2} . \\
& q_{i j}\left(x_{0}, y_{0}\right)=0 \bmod n \text { and }(X Y)^{k} \mid q_{i j}(x X, y Y) .
\end{aligned}
$$

Lattice of polynomials

\square Lattice formed by the coefficient vectors of the polynomials $q_{i j}(x X, y Y)$.

Full-rank lattice of dimension $\omega=(\delta+k+1)^{2}$.
Illustration for $q(x, y)=1+a_{10} x+a_{01} y+a_{11} x y$ and $k=1$.

	1	x	y	$x y$	x^{2}	$x^{2} y$	y^{2}	$x y^{2}$	$x^{2} y^{2}$
$X Y q$	$X Y$	$a_{10} X^{2} Y$	$a_{01} X Y^{2}$	$a_{11} X^{2} Y^{2}$					
$Y x q$		$X Y$		$a_{01} X Y^{2}$	$a_{10} X^{2} Y$	$a_{11} X^{2} Y^{2}$			
$X y q$			$X Y$	$a_{10} X^{2} Y$					
$x y q$				$X Y$		$a_{10} X^{2} Y$			$a_{01} X Y^{2}$
$a_{11} X^{2} Y^{2}$									
$x^{2} n$					$X^{2} n$				
$x^{2} y n$						$X^{2} Y n$			
$y^{2} n$							$Y^{2} n$		
$x y^{2} n$								$X Y^{2} n$	
$x^{2} y^{2} n$									$A_{11} X^{2} Y^{2}$

Size of $h(x, y)$

- We want the coefficients of $h(x X, y Y)$ to be small enough, for the following two reasons:
■ 1) If the coefficients of $h(x X, y Y)$ are small enough :
- Then $h\left(x_{0}, y_{0}\right)=0$ holds not only modulo n, but also over \mathbb{Z} (Howgrave-Graham's lemma).
- The condition is $\|h(x X, y Y)\|<\frac{n}{\sqrt{\omega}}$.

■ 2) If the coefficients of $h(x X, y Y)$ are small enough : - Then $h(x, y)$ cannot be a multiple of $p(x, y)$. - The condition is $\|h(x X, y Y)\|<2^{-\omega} \cdot(X Y)^{k} \cdot W$
\square From the definition of n, the first condition is satisfied when the second is satisfied.

Size of the factors of polynomials

■ Mignotte's bound :
Let $f, g \in \mathbb{Z}[x]$ and $\operatorname{deg} f=k$.
If f divides g in $\mathbb{Z}[x]$, then $\|g\| \geq 2^{-k} \cdot\|f\|_{\infty}$.
\square Extension to bivariate polynomials :
Let $a, b \in \mathbb{Z}[x, y]$ of degree less than d independently in x, y.

- If a divides b in $\mathbb{Z}[x, y]$, then $\|b\| \geq 2^{-(d+1)^{2}} \cdot\|a\|_{\infty}$
\square Proof: let $f(x)=a\left(x, x^{d+1}\right)$ and $g(x)=b\left(x, x^{d+1}\right)$. Then f divides g and $\operatorname{deg} f \leq(d+1)^{2}$.

$$
\|f\|_{\infty}=\|a\|_{\infty} \text { and }\|g\|=\|b\| .
$$

Apply Mignotte's bound to f and g.

Size of $h(x, y)$

- If $h(x, y)$ was a multiple of $p(x, y)$:
- Then $h(x X, y Y)$ is a multiple of $(X Y)^{k} \cdot p(x X, y Y)$.
\checkmark From the previous lemma, this would give:
$\|h(x X, y Y)\| \geq 2^{-\omega} \cdot(X Y)^{k} \cdot W$
■ Conversely, if $\|h(x X, y Y)\|<2^{-\omega} \cdot(X Y)^{k} \cdot W$:
- $h(x, y)$ can not be a multiple of $p(x, y)$.
- One recovers $\left(x_{0}, y_{0}\right)$ by taking the resultant.

■ Using LLL, we obtain a non-zero $h(x, y)$ such that :

- $\|h(x X, y Y)\| \leq 2^{(\omega-1) / 4} \cdot \operatorname{det}(L)^{1 / \omega}$
- Make sure that :

$$
2^{(\omega-1) / 4} \cdot \operatorname{det}(L)^{1 / \omega}<2^{-\omega} \cdot(X Y)^{k} \cdot W
$$

The bound for $X Y$

- We obtain the following condition on $X Y$.
- $X Y<2^{-\beta} W^{\alpha}$
- where $\alpha=\frac{2}{3 \delta}-\frac{2}{3 \cdot(k+1)}$ and $\beta=\frac{4 k^{2}}{\delta}+13 \cdot \delta$.
- Taking $k=\lfloor 1 / \varepsilon\rfloor$, we obtain :

$$
X Y<W^{2 /(3 \delta)-\varepsilon} \cdot 2^{-4 /\left(\delta \cdot \varepsilon^{2}\right)-13 \delta}
$$

The algorithm is polynomial in $(\log W, \delta, 1 / \varepsilon)$.
■ If $X Y<W^{2 /(3 \delta)-\varepsilon}$,
We exhaustively search the high-order $4 /\left(\delta \cdot \varepsilon^{2}\right)+13 \delta$ bits of x_{0}.
For a fixed ε, the running time is polynomial in $\left(\log W, 2^{\delta}\right)$.

Comparison with Coppersmith

■ Difference in lattice dimension :

- Coppersmith's algorithm works with a d-dimensional lattice over \mathbb{Z}^{ω}, where $d=\delta^{2}+2(k+1) \delta$ and $\omega=(\delta+k+1)^{2}$
We work with a full-rank lattice over \mathbb{Z}^{ω}
- Our algorithm is asymptotically less efficient than Coppersmith's:
- It is polynomial-time under the condition $X Y<W^{2 /(3 \delta)-\varepsilon}$.
- Instead of $X Y<W^{2 /(3 \delta)}$.

Application to factoring

- Let $N=p \cdot q$ and assume that we know the half high-order bits of p.
\square Write $p=p_{0}+x_{0}$ and $q=q_{0}+y_{0}$.
- p_{0} and q_{0} are known.
- $\left|x_{0}\right|<N^{1 / 4}$ and $\left|y_{0}\right|<N^{1 / 4}$
- Define the polynomial:

$$
\begin{aligned}
p(x, y) & =\left(p_{0}+x\right)\left(q_{0}+y\right)-N \\
& =\left(p_{0} q_{0}-N\right)+q_{0} x+p_{0} y+x y
\end{aligned}
$$

Then $\left(x_{0}, y_{0}\right)$ is a small root of $p(x, y)$.
Using the previous theorem, one can recover $\left(x_{0}, y_{0}\right)$ in polynomial time.

Practical experiments

■ Using Shoup's NTL library, on a 733MHz PC under Linux:

N	bits of p given	lattice dimension	running time
512 bits	144 bits	25	35 sec
512 bits	141 bits	36	3 min
1024 bits	282 bits	36	20 min

\square Using the simplification of Howgrave-Graham for the particular case of factoring with high-bits known :

N	bits of p given	lattice dimension	running time
1024 bits	282 bits	11	1 sec
1024 bits	266 bits	25	1 min
1536 bits	396 bits	33	19 min

This simplification does not apply to the general case of finding small roots of $p(x, y)=0$.

Conclusion

- A new algorithm for finding small roots of $p(x, y)=0$.

Simpler than Coppersmith's algorithm, but asymptotically less efficient.
The bivariate integer case is now as simple to analyze and implement as the univariate modular case.

■ Experiments show that the algorithm works well in practice.
But for the particular case of integer factorization with high-bits known, the Howgrave-Graham simplification appears to be more efficient.

