
Finding Small Roots of
Bivariate Integer Polynomial

Equations Revisited

Jean-Sébastien Coron

Gemplus Card International

Issy-les-Moulineaux, France

Solving polynomial equations

� Let p(x) be a polynomial and N an RSA modulus.
Solving p(x) = 0 mod N : hard problem :
� For p(x) = x2 − a, equivalent to factoring N .
� For p(x) = xe − a, equivalent to inverting RSA.

� Let f(x, y) be a polynomial with integer coefficients.
Finding (x0, y0) ∈ Z

2, f(x0, z0) = 0 : hard problem.
� Take f(x, y) = N − x · y, equivalent to factoring N .

� Coppersmith showed (E96) that finding small roots
is easy:
� Univariate modular case: p(x) = 0 mod N .
� Bivariate integer case: f(x, y) = 0 over Z.

01/05/04 2/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Summary

� Two distinct algorithms by Coppersmith:
� The univariate modular case: p(x) = 0 mod N .
X Simplified by Howgrave-Graham in 1997.

� The bivariate integer case: p(x, y) = 0 over Z.
X Algorithm still difficult to understand.

� New algorithm to solve the bivariate integer case:
� Simplification analogous to [HG97] for the

univariate case.
� Easy to understand and implement.

� Application :
� Factoring n = pq knowing the high-order bits of p.

01/05/04 3/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Summary

� Summary of Coppersmith’s algorithms:

Problem Solution [Cop96] Simplification

f(x) = 0 mod N Proven [HG97]

f(x, y) = 0 mod N Heuristic [HG97]

f(x, y) = 0 over Z Proven this talk

� Finding a proof for f(x, y) = 0 mod N is still an
open problem.

01/05/04 4/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Solving p(x) = 0 mod N

� Coppersmith’s theorem:
� Given an integer N and a polynomial p(x) such

that deg p = δ, one can find in polynomial time all
integer x0 such that p(x0) = 0 mod N and
|x0| ≤ N1/δ.

� Based on LLL lattice reduction algorithm.

� Numerous applications in cryptography:
� Cryptanalysis of plain RSA encryption when

some part of the message is known :
X If c = (B + x0)

3 mod N , let p(x) = (B + x)3 − c

and recover x0 if x0 < N1/3.

01/05/04 5/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Solving x2 + ax + b = 0 mod N .

� Illustration with a polynomial of degree 2 :
� Let p(x) = x2 + ax + b mod N .
� We must find x0 such that p(x0) = 0 mod N and

|x0| ≤ X.

� We generate a linear integer combination h(x) of the
polynomials :
� p(x), Nx and N .
� Then h(x0) = 0 mod N .

� If the coefficients of h(x) are small enough :
� Then |h(x0)| < N and h(x0) = 0 must hold over Z.
� This enables to recover x0.

01/05/04 6/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Howgrave-Graham lemma

� Given h(x) =
∑

hix
i, let ‖h‖2 =

∑

h2
i .

� Howgrave-Graham lemma :
� Let h ∈ Z[x] be a sum of at most ω monomials. If

h(x0) = 0 mod N with |x0| ≤ X and
‖h(xX)‖ < N/

√
ω, then h(x0) = 0 holds over Z.

X

N

2N

0

01/05/04 7/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Building the lattice

� The coefficients of h(xX) must be small:
� h(xX) is a linear integer combination of the

polynomials

p(xX) = X2 · x2 + aX · x + b

q1(xX) = NX · x
q2(xX) = N

� We must find a small integer linear combination of
the vectors:
� [X2, aX, b], [0, NX, 0] and [0, 0, N]

� Tool: LLL algorithm.

01/05/04 8/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Building the lattice

� We must find a small linear integer combination
h(xX) of the polynomials p(xX), xXN and N .
� Let L be the corresponding lattice, with a basis of

row vectors : 







X2 aX b

NX

N









� Using LLL, one can find a lattice vector b of norm :
‖b‖ ≤ 2(det L)1/3 ≤ 2N2/3X

� Then if X < N1/3/4, then ‖h(xX)‖ = ‖b‖ < N/2

� Howgrave-Graham lemma applies and h(x0) = 0.

01/05/04 9/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Solving p(x) = 0 mod N

� The previous bound gives |x0| ≤ N1/3/4.

� But Coppersmith’s bound gives |x0| ≤ N1/2.

� One obtains Coppersmith’s bound by using more
multiples of p(x) and working modulo N `:

� Let qik(x) = xi · N `−kpk(x) mod N `

� p(x0) = 0 mod N ⇒ pk(x0) = 0 mod Nk

⇒ qik(x0) = 0 mod N `.

� Then h(x0) = 0 mod N `.
� If the coefficients of h(x) are small enough, then

h(x0) = 0 and one can recover x0 using any
standard root-finding algorithm.

01/05/04 10/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

The bivariate integer case

� Solving p(x, y) = 0 seems to be hard.
� Integer factorization is a special case: take

p(x, y) = N − x · y.

� Coppersmith’s showed (E96) that finding small roots
is easy :
� Let p(x, y) ∈ Z[x, y] has a maximum degree δ

independently in x, y, and let W = max |pij|X iY j.

� If XY < W 2/(3δ) one can find in polynomial time all
integer pairs (x0, y0) such that p(x0, y0) = 0,
|x0| ≤ X and |y0| ≤ Y .

� Based on the LLL algorithm.

01/05/04 11/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

The bivariate integer case

� But Coppersmith’s algorithm is difficult to
understand.
� It uses non full-rank lattices, which makes

determinant computation tedious.

� Our contribution : a new algorithm for solving
p(x, y) = 0.
� Simplification analogous to Howgrave-Graham for

the univariate case.
� Easy to understand and implement.
� But asymptotically less efficient than

Coppersmith’s algorithm.

01/05/04 12/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Approach: solving p(x, y) = 0

� Let q(x, y) = p−1
00 p(x, y) mod n for some integer n.

� Find a small integer linear combination h(x, y) of the
polynomials xiyjq(x, y) and xiyjn.
� q(x0, y0) = 0 mod n ⇒ h(x0, y0) = 0 mod n.

� If the coefficients of h(x, y) are sufficiently small :
� 1) h(x0, y0) = 0 using Howgrave-Graham lemma.
� 2) h(x, y) cannot be a multiple of p(x, y).

� Then since p(x, y) is irreducible :
� Q(x) = Resultanty(h(x, y), p(x, y)) is such that

Q 6= 0 and Q(x0) = 0.
� This gives x0 and finally y0 by solving p(x0, y) = 0.

01/05/04 13/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

An illustration

� Example with p(x, y) = a + bx + cy + dxy.
� Assume that a 6= 0 and d 6= 0.
� Find (x0, y0) such that p(x0, y0) = 0.
� W = ‖p(xX, yY)‖∞ = max{|a|, |b|X, |c|Y, |d|XY },

where |x0| ≤ X and |y0| ≤ Y .

� Generate n such that W ≤ n < 2W and gcd(n, a) = 1

� Define q00(x, y) = a−1p(x, y) mod n,
q00(x, y) = 1 + b′x + c′y + d′xy mod n

� Define q10(x, y) = nx, q01(x, y) = ny and
q11(x, y) = n.

� We have qij(x0, y0) = 0 mod n.

01/05/04 14/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Lattice of polynomials

� Let h(x, y) be a linear combination of the qij(x, y).
� Then h(x0, y0) = 0 mod n

L =















1 b′X c′Y d′XY

nX

nY

nXY















� Using LLL, one obtains h(x, y) such that:

� ‖h(xX, yY)‖ ≤ 2 · (det L)1/4 ≤ 2n3/4(XY)1/2

� If XY < n1/2/16, then ‖h(xX, yY)‖ < n/2.
� HG lemma applies, and h(x0, y0) = 0.

01/05/04 15/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Solving p(x, y) = 0

� ‖h(xX, yY)‖ < n/2 ≤ ‖p(xX, yY)‖∞ ≤ ‖p(xX, yY)‖
� If h(x, y) was a multiple of p(x, y).

� Then h(x, y) = λ · p(x, y) with λ ∈ Z
∗

� We would have ‖h(xX, yY)‖ ≥ ‖p(xX, yY)‖.
� ⇒ h(x, y) cannot be a multiple of p(x, y).

� p(x0, y0) = h(x0, y0) = 0 and p(x, y) is irreducible.
� One can recover (x0, y0) by taking the resultant.

� This works if XY < W 1/2/16 < W 2/3.
� By adding more multiples of q(x, y) in the lattice,

one recovers Coppersmith’s bound.

01/05/04 16/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Solving p(x, y) = 0

� Theorem :
� Let p(x, y) ∈ Z[x, y] has a maximum degree δ

independently in x, y, and let
W = max |pij|X iY j = ‖p(xX, yY)‖∞.

� If XY < W 2/(3δ)−ε for some ε > 0, one can find in
polynomial time all integer pairs (x0, y0) such that
p(x0, y0) = 0, |x0| ≤ X and |y0| ≤ Y .

� Asymptotically weaker than Coppersmith’s theorem

� which only assumes XY < W 2/(3δ).
� Our algorithm is not polynomial for this weaker

bound.

01/05/04 17/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Solving p(x, y) = 0

� Let p(x, y) = p00 +
∑

pijx
iyj of degree δ.

� Assume first that p00 6= 0 and gcd(p00, XY) = 1.
� Let k ≥ 0 be a parameter.
� Generate n = (XY)k · u, where u ' ‖p(xX, yY)‖∞
� Let q(x, y) = p−1

00 · p(x, y) mod n

� Then q(x, y) = 1 +
∑

(i,j) 6=(0,0) aijx
iyj

� We form the polynomials qij(x, y) :

� qij(x, y) = xiyjXk−iY k−jq(x, y), for 0 ≤ i, j ≤ k.

� qij(x, y) = xiyjn, for (i, j) ∈ [0, δ + k]2 \ [0, k]2.

� qij(x0, y0) = 0 mod n and (XY)k|qij(xX, yY).

01/05/04 18/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Lattice of polynomials

� Lattice formed by the coefficient vectors of the
polynomials qij(xX, yY).

� Full-rank lattice of dimension ω = (δ + k + 1)2.
� Illustration for q(x, y) = 1 + a10x + a01y + a11xy and

k = 1.

1 x y xy x2 x2y y2 xy2 x2y2

XY q XY a10X
2Y a01XY 2 a11X

2Y 2

Y xq XY a01XY 2 a10X
2Y a11X

2Y 2

Xyq XY a10X
2Y a01XY 2 a11X

2Y 2

xyq XY a10X
2Y a01XY 2 a11X

2Y 2

x2n X2n

x2yn X2Y n

y2n Y 2n

xy2n XY 2n

x2y2n X2Y 2n

01/05/04 19/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Size of h(x, y)

� We want the coefficients of h(xX, yY) to be small
enough, for the following two reasons :

� 1) If the coefficients of h(xX, yY) are small enough :
� Then h(x0, y0) = 0 holds not only modulo n, but

also over Z (Howgrave-Graham’s lemma).
� The condition is ‖h(xX, yY)‖ < n√

ω
.

� 2) If the coefficients of h(xX, yY) are small enough :
� Then h(x, y) cannot be a multiple of p(x, y).

� The condition is ‖h(xX, yY)‖ < 2−ω · (XY)k · W
� From the definition of n, the first condition is satisfied

when the second is satisfied.
01/05/04 20/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Size of the factors of polynomials

� Mignotte’s bound :
� Let f, g ∈ Z[x] and deg f = k.

� If f divides g in Z[x], then ‖g‖ ≥ 2−k · ‖f‖∞.

� Extension to bivariate polynomials :
� Let a, b ∈ Z[x, y] of degree less than d

independently in x, y.

� If a divides b in Z[x, y], then ‖b‖ ≥ 2−(d+1)2 · ‖a‖∞
� Proof: let f(x) = a(x, xd+1) and g(x) = b(x, xd+1).

� Then f divides g and deg f ≤ (d + 1)2.
� ‖f‖∞ = ‖a‖∞ and ‖g‖ = ‖b‖.
� Apply Mignotte’s bound to f and g.

01/05/04 21/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Size of h(x, y)

� If h(x, y) was a multiple of p(x, y) :

� Then h(xX, yY) is a multiple of (XY)k · p(xX, yY).
� From the previous lemma, this would give:

‖h(xX, yY)‖ ≥ 2−ω · (XY)k · W
� Conversely, if ‖h(xX, yY)‖ < 2−ω · (XY)k · W :

� h(x, y) can not be a multiple of p(x, y).
� One recovers (x0, y0) by taking the resultant.

� Using LLL, we obtain a non-zero h(x, y) such that :

� ‖h(xX, yY)‖ ≤ 2(ω−1)/4 · det(L)1/ω

� Make sure that :
2(ω−1)/4 · det(L)1/ω < 2−ω · (XY)k · W .

01/05/04 22/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

The bound for XY

� We obtain the following condition on XY .
� XY < 2−βW α

� where α = 2
3δ − 2

3·(k+1) and β = 4k2

δ + 13 · δ.

� Taking k = b1/εc, we obtain :

� XY < W 2/(3δ)−ε · 2−4/(δ·ε2)−13δ

� The algorithm is polynomial in (log W, δ, 1/ε).

� If XY < W 2/(3δ)−ε,
� We exhaustively search the high-order

4/(δ · ε2) + 13δ bits of x0.
� For a fixed ε, the running time is polynomial in

(log W, 2δ).
01/05/04 23/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Comparison with Coppersmith

� Difference in lattice dimension :
� Coppersmith’s algorithm works with a

d-dimensional lattice over Z
ω, where

d = δ2 + 2(k + 1)δ and ω = (δ + k + 1)2

� We work with a full-rank lattice over Z
ω

� Our algorithm is asymptotically less efficient than
Coppersmith’s:
� It is polynomial-time under the condition

XY < W 2/(3δ)−ε.
� Instead of XY < W 2/(3δ).

01/05/04 24/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Application to factoring

� Let N = p · q and assume that we know the half
high-order bits of p.

� Write p = p0 + x0 and q = q0 + y0.
� p0 and q0 are known.

� |x0| < N1/4 and |y0| < N1/4

� Define the polynomial:

p(x, y) = (p0 + x)(q0 + y) − N

= (p0q0 − N) + q0x + p0y + xy

� Then (x0, y0) is a small root of p(x, y).
� Using the previous theorem, one can recover

(x0, y0) in polynomial time.
01/05/04 25/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Practical experiments

� Using Shoup’s NTL library, on a 733MHz PC under
Linux :

N bits of p given lattice dimension running time

512 bits 144 bits 25 35 sec

512 bits 141 bits 36 3 min

1024 bits 282 bits 36 20 min

� Using the simplification of Howgrave-Graham for the
particular case of factoring with high-bits known :

N bits of p given lattice dimension running time

1024 bits 282 bits 11 1 sec

1024 bits 266 bits 25 1 min

1536 bits 396 bits 33 19 min

� This simplification does not apply to the general
case of finding small roots of p(x, y) = 0.

01/05/04 26/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

Conclusion

� A new algorithm for finding small roots of p(x, y) = 0.
� Simpler than Coppersmith’s algorithm, but

asymptotically less efficient.
� The bivariate integer case is now as simple to

analyze and implement as the univariate modular
case.

� Experiments show that the algorithm works well in
practice.
� But for the particular case of integer factorization

with high-bits known, the Howgrave-Graham
simplification appears to be more efficient.

01/05/04 27/27
Bull & Innovatron Patents

Finding Small Roots of Bivariate Integer Polynomial Equations Revisited

	Titlepage
	Solving polynomial equations
	Summary
	Summary
	Solving $p(x)=0 mod
N$
	Solving $x^2+ax+b=0 mod N$.
	Howgrave-Graham lemma
	Building the lattice
	Building the lattice
	Solving $p(x)=0 mod
N$
	The bivariate integer case
	The bivariate integer case
	Approach: solving $p(x,y)=0$
	An illustration
	Lattice of polynomials
	Solving $p(x,y)=0$
	Solving $p(x,y)=0$
	Solving $p(x,y)=0$
	Lattice of polynomials
	Size of $h(x,y)$
	Size of the factors of polynomials
	Size of $h(x,y)$
	The bound for XY
	Comparison with Coppersmith
	Application to factoring
	Practical experiments
	Conclusion

