On the Hardness of Information-Theoretic MPC

Yuval Ishai
Eyal Kushilevitz
Technion

Open Problems Museum

Motivating Question

Ben-Or, Goldwasser, Wigderson, 1988 Chaum, Crépeau, Damgård, 1988

Information-theoretic MPC is feasible!

 $k \ge 3$ players can compute any function f of their inputs with total work = poly(circuit-size)

... or with work = poly(formula-size) and constant rounds [BB89,...]

Beaver, Micali, Rogaway, 1990 B., Feigenbaum, Kilian, R., 1990

Open question:

Can *k* computationally unbounded players compute an arbitrary f with communication = poly(input-length)?

Can this be done using a constant number of rounds?

Question Reformulated

Is the communication complexity of MPC strongly correlated with the computational complexity of the function being computed?

= communication-efficient MPC

= no communication-efficient MPC

Our Results

 Connect latter MPC question to other, notoriously hard, problems.

- The three problems are "essentially equivalent"
 - up to considerable deterioration of parameters

Significance

- Breakthrough on LDC question will imply breakthrough on MPC question and vice versa.
- Resolving MPC question is likely to be hard
 - Even when restricted to constant rounds

some f₀ cannot be computed by 18 unbounded players using polynomial communication and constant rounds

breakthrough lower bound for LDC

Related Work

- Communication-efficient MPC with short inputs
 - communication=poly(input-length) possible when #players ≈ total input-length [BFKR90]
 - vacuous when #players << input-length.
- Communication-preserving secure computation [NN01]
 - Different goals: polynomial vs. sublinear communication
 - Different model: information-theoretic multi-party vs. computational two-party
 - Different techniques: our question is trivialized in the [NN01] model

Rest of Talk

- Describe primitives and questions:
 - MPC
 - PIR, SPIR
 - -LDC
- Outline connections:

Secure Multiparty Computation (MPC)

- $f:\{0,1\}^n \rightarrow \{0,1\}$
- k players
- Passive adversary
- Goal
 - Compute f
 - Maintain privacy against ≤ t players
- Parameters
 - k is fixed, input length n varies
 - This talk: t=1 (general t in addressed in paper)

Pure Information-Theoretic MPC

- Model
 - Secure channels
 - Computationally unbounded players
 - Security defined purely in terms of information
 - Compare to Shannon's notion of encryption
- Why is this model interesting?
 - Among "cleanest" nontrivial crypto problems!
 - Computation becomes feasible for small n
 - Useful for understanding the standard i.t. model
- Question: is there k for which every f can be computed using only poly(n) communication?

Information-Theoretic PIR [CGKS95]

PIR (contd.)

- Goal: minimize communication complexity.
- Best upper bound: $N^{1/\widetilde{\Omega}(k)}$ [CGKS95,...,BIKR02]
 - $-k=2: O(N^{1/3})$
 - $-k=3: O(N^{1/5.25})$
- Best lower bound: $\Omega(\log N)$ [Mann98]
- Question: polylog(N) communication?

Locally Decodable Codes (LDC) [ктоо]

Requirements:

 (q, δ, ε) -LDC

q-query LDC

- High fault-tolerance
- Local decoding

tolerate δm errors

use q queries, succeed w/prob \geq 1/2+ ε const. $\delta, \varepsilon > 0$ (independent of n)

Question: Given q, how large should m(n) be in a q-query LDC?

$$q=2: 2^{\Theta(n)}$$

$$q=3: 2^{O(n^{\land} 0.5)} \Omega(n^{1.5})$$

PIR vs. LDC [KT00]

k-server PIR with
α-bit queries and
β-bit answersk-query LDC
of length 2^{α}
over $\Sigma = \{0,1\}^{\beta}$

- Converse relation also holds.
- Best known LDC are obtained from PIR protocols.
 - const. q: $m = exp(n^{c \cdot loglogq / qlogq})$
- k-server polylog PIR ↔ k-query "quasi-poly" LDC

Symmetric PIR (SPIR) [GIKM98]

PIR->SPIR

- General PIR→SPIR transformation [GIKM98]
 - low communication overhead
 - one additional server
 - |r| = N: way too much for our purposes!
- Our approach: information-theoretic derandomization
 - Idea: if CC(SPIR)=c, then ∃S⊆{0,1} N of size ≈ 2 $^{c+\sigma}$ such that $r \in_R S$ is as good as $r \in_R \{0,1\}^N$, up to 2- $^\sigma$ statistical distance.
 - > SPIR protocols do not require much more randomness than communication.
 - Similar result can be shown for arbitrary i.t. protocols.

SPIR→MPC k servers k²+2 players

MPC->PIR

- Idea:
 - view database x as a truth-table of f_x
 - apply MPC among servers to let user privately learn f_x(i)
 - Some massaging required
- Produces multi-round PIR
- Still good enough to get nontrivial LDC

Further Research

- Find more connections
 - Generalized secret-sharing?
 - Time efficient constant-round protocol for any f∈P?
- Improve PIR→MPC connection
 - Multi-round PIR → MPC?
 - Eliminate growth of k?
- Computationally efficient derandomization
 - Easy given exponentially strong PRGs
 - Can one use standard PRGs?
 - Better yet, on worst-case hardness assumptions (a-la Nisan-Wigderson)?