Small Generic Hardcore Subsets for the Discrete Logarithm: Short Secret DL-Keys

C.P. Schnorr
Fachbereich Mathematik/Informatik
Universität Frankfurt, Germany
schnorr@cs.uni-frankfurt.de

Abstract for rump and poster session

Let \(G \) be a group of prime order \(q \) with generator \(g \). We study hardcore subsets \(H \subset G \) of the discrete logarithm (DL) \(\log_g \) in the model of generic algorithms. In this model we count group operations such as multiplication, division while computations with non-group data are for free. It is known from Nechaev (1994) and Shoup (1997) that generic DL-algorithms for the entire group \(G \) must perform \(\Omega(\sqrt{q}) \) generic steps.

Main results. Let \(m = \#H \) denote the size of \(H \). We show that the generic DL-complexity is at least \(m^2 + o(m) \) for almost all \(H \) of size \(m \leq \sqrt{q} \). On the other hand \(\lceil m^2 \rceil + 1 \) generic steps are always sufficient. Thus the generic DL-complexity is \(\frac{m^2}{q} + o(m) \) for almost all subsets \(H \subset G \) of size \(m \leq \sqrt{q} \). For \(m = \sqrt{q} \) the generic DL-complexity is \(\frac{1}{2\sqrt{q}} + o(\sqrt{q}) \), i.e., about \(\frac{1}{2\sqrt{q}} \) times the generic DL-complexity \(\sqrt{2q} \) for the entire group \(G \). Interestingly, our generic lower bounds hold for arbitrary multivariate exponentiations and not just for multiplications/division.

Short secret keys. Our main result justifies to generate secret keys of DL-cryptosystems from random seeds with \(\frac{1}{2} \log_2 q \) bits. For this expand a random integer \(x' \in_R [0, \sqrt{q}] \) of \(\frac{1}{2} \log_2 q \) bits using a strong hash function \(SH \) into a pseudo-random integer \(SH(x') \in_R [0, q] \). The corresponding pair \(x', g^{SH(x')} \) is a DL-key pair that is — for generic attacks — nearly as strong as pairs \(x, g^x \) for truly random \(x \in_R [0, q] \). This is because the generic DL-complexity is for almost all subsets \(H \subset G \) of size \(\sqrt{q} \) about \(\frac{1}{2\sqrt{q}} \) times the generic DL-complexity for \(G \). Clearly, a strong hash function \(SH \) yields a set of pseudo-random public keys \(SH[0, \sqrt{q}] \subset [0, q] \) of size \(\Omega(\sqrt{q}) \) since otherwise collisions \(SH(x') = SH(x'') \) can be constructed using less than \(\Omega(\sqrt{q}) \) function evaluations \([0, \sqrt{q}] \ni x \mapsto SH(x) \). Moreover, it is reasonable to assume that the set \(SH[0, \sqrt{q}] \) does not fall into the exceptional class of subsets \(H \subset G \) where \(\log_g \) is easy in the generic model. Generating secret keys from short random seeds can be practical if a strong hash function \(SH \) is at hand anyway. Now, there is a theoretical justification that seeds of length \(\frac{1}{2} \log_2 q \) are nearly of the highest security level while shorter seeds are
less secure.

Moreover, as the generic DL-complexity is \(\frac{m^2}{2} + o(m) \) for almost all subsets \(H \subset G \) of size \(m \), it is sufficient to generate secret DL-keys from seeds \(x' \) ranging over a set of size \(m \) that is so large that \(\frac{m^2}{2} \) generic steps are infeasible — at present \(m \geq 2^{80} \) is sufficient.

Fast pseudo-random exponentiation. An intriguing challenge along this line is to replace \(SH \) in the short secret key representation by a pseudo-random function \(F \) that speeds up the exponentiation \(x' \mapsto g^{F(x')} \). We will study this problem in another submission.