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Alice Users
Bob g
Jack

—> San > %

@

Database %

mechanism

Jane

Database containing
data. E.g., census data,
medical records, etc.

e Utility: Accurate statistical info is released to users
* Privacy: Each individual’s sensitive info remains hidden
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Simple Anonymization Techniques are
Not Good Enough!

* Governor of Massachusetts Linkage Attack [Swe02]

— “Anonymized” medical data + public voter
registration records
= Governor of MA’s medical record identified!

e Netflix Attack [Nsos]

— “Anonymized” Netflix user movie rating data +
public IMDb database
= Netflix dataset partly deanonymized!



Privacy Definitions

* k-anonymity [Sam01, Swe02]

— Each record in released data table is indistinguishable from
k-1 other records w.r.t. certain identifying attributes

e Differential privacy [DMNS06]

— V databases D, D’ differing in only one row,
San(D) =, San(D’)

e Zero-knowledge privacy [GLP11]

— V adversary A interacting with San, 3 a simulator S s.t. V D,
z, i, the simulator S can simulate A’s output given just k
random samples from D \ {i}:

Out,(A(z) €> San(D)) =, S(z, RS, (D \ {i}))



Privacy Definitions

* k-anonymity
— Good: Simple; efficient; practical
— Bad: Weak privacy protection; known attacks

* Differential privacy
— Good: Strong privacy protection; lots of mechanisms
— Bad: Have to add noise. Efficient? Practical?

e Zero-knowledge privacy

— Good: Even stronger privacy protection, lots of
mechanisms

— Bad: Have to add even more noise. Efficient? Practical?



Practical Sanitization?

e Differential privacy and zero-knowledge privacy
— Mechanism needs to be randomized

— noise is added to the exact answer/output (sometimes
quite a lot!)

* |n practice
— Don’t want to add (much) noise
— Want simple and efficient sanitization mechanisms

* Problem: Is there a practical way of sanitizing
data while ensuring privacy and good utility?



Privacy from Random Sampling

* |n practice, data is often collected via random
sampling from some population (e.g., surveys)
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* Already known: If San is differentially private, then the random
sampling step amplifies the privacy of San [KLNRS08]

 Can we use a qualitatively weaker privacy def. for San and still
have the combined process satisfy a strong notion of privacy?
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Leveraging Random Sampling

e Goal: Provide a privacy definition such that if San
satisfies the privacy definition, then:

Random Sampling +

San

Differential privacy

=) or zero-knowledge
privacy

* Should be weaker than differential privacy

= Better utility!

e Should be meaningful by itself (without random sampling)

— Strong fall-back guarantee if the random sampling is
corrupted or completely leaked



k-Anonymity Revisited

k-anonymity: Each record in released data table is
indistinguishable from k-1 other records w.r.t. certain
identifying attributes

Based on the notion of “blending in a crowd”
Simple and practical
Problem: Definition restricts the output, not the

mechanism that generates it
— Leads to practical attacks on k-anonymity



k-Anonymity Revisited

* Asimple example illustrating the problem:

— Use any existing algorithm to generate a data table
satisfying k-anonymity

— At the end of each row, attach the personal data of
some fixed individual from the original database

* The output satisfies k-anonymity but reveals
personal data about some individuall!

* There are plenty of other examples!
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Towards a New Privacy Definition

* k-anonymity does not impose restrictions on
mechanism

— Does not properly capture “blending in a crowd”

* One of the key insights of differential privacy:
Privacy should be a property of the mechanism!

* We want a privacy definition that imposes
restrictions on the mechanism and properly
captures “blending in a crowd”
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Our Main Results

* We provide a new privacy definition called
crowd-blending privacy

* We construct simple and practical mechanisms
for releasing histograms and synthetic data points

e We show:

Random
Sampling

Crowd-
blending
privacy

Zero-knowledge
privacy
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Blending in a Crowd

* Two individuals (with data values) t and t” are e-
indistinguishable by San if

San(D, t) =, San(D, t") VD

* Differential privacy: Every individual t in the
universe is e-indistinguishable by San from
every other individual t’ in the universe.

— In any database D, each individual in D is &-

indistinguishable by San from every other
individual in D
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Blending in a Crowd

* First attempt of a privacy definition:
V D of size 2 k, each individual in D is
e-indistinguishable by San from at least k-1 other
individuals in D.

— Collapses back down to differential privacy:
If DP doesn’t hold, then 3 t and t’ s.t. San can
e-distinguish t and t’; now, consider a database

D=(tt,t ... t).

e Solution: D can have “outliers”, but we require
San to essentially delete/ignore them.
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Crowd-Blending Privacy

e Definition: San is (k,e)-crowd-blending private
if VD, and VtinD, either

* tis e-indistinguishable from > k individuals in D, or
* tis essentially ignored: San(D) =_ San(D \ {t}).

* Weaker than differential privacy
= Better utility!

* Meant to be used in conjunction with random
sampling, but still meaningful by itself
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Privately Releasing Histograms

e (k,0)-crowd-blending private mechanism for
releasing histogram:

— Compute histogram
— For bin counts < k, suppress to O

Suppressing
counts < k
K

Original Histogram Suppressed Histogram

Simple and similar to what is done in practice!
(Not differentially private)
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Privately Releasing Synthetic Data Points

Impossible to efficiently and privately release synt

hetic data

points for answering general classes of counting queries

[DNRRVO9, UV11]
* We focus on answering smooth query functions
(k,e)-crowd-blending private mechanism:

Outlier

/

0‘1

 The above CBP mechanism: Useful for answering all smooth

query functions with decent accuracy
— Not possible with differentially private synthetic data points
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Our Main Theorem

Population
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With probability p private mechanism

Theorem (Informal): The combined process
satisfies zero-knowledge privacy, and thus
differential privacy as well.

Our theorem holds even if the random sampling is slightly biased as follows:
* Most individuals are sampled w.p. = p
* Remaining are sampled with arbitrary probability 18



Thank you!



