
Black-Box Constructions of
Concurrently Secure Protocols

Huijia (Rachel) Lin

MIT & BU

Rafael Pass

Cornell

Secure MPC

Secure MPC

Goal: Allow a set of distrustful parties to

compute ANY function f on their own

Secure MPC

Goal: Allow a set of distrustful parties to

compute ANY function f on their own

Secure MPC

Goal: Allow a set of distrustful parties to

compute ANY function f on their own

Correctness

What to get---the outputs

Privacy

What to hide---the private inputs

Secure MPC

Goal: Allow a set of distrustful parties to

compute ANY function f on their own

Correctness

What to get---the outputs

Privacy

What to hide---the private inputs

Even when no honest majority

IDEAL REAL

Simulation Paradigm

IDEAL REAL



Simulation Paradigm

“as correct & private as”

IDEAL REAL



Simulation Paradigm

“as correct & private as”

IDEAL REAL

A
R



Simulation Paradigm

“as correct & private as”

IDEAL REAL

A
R


A

I

Simulation Paradigm

“as correct & private as”

IDEAL REAL

A
R


A

I

Simulation Paradigm

“as correct & private as”

Simulator

IDEAL REAL

A
R


A

I

x2 y2 x2y2

Simulation Paradigm

x1 y1 x1 y1

“as correct & private as”

Correctness: The output of every player in ideal is the same as in real

Simulator

IDEAL REAL

A
R


A

I

x2 y2 x2y2

Simulation Paradigm

x1 y1 x1 y1

“as correct & private as”

Correctness: The output of every player in ideal is the same as in real

Privacy: The simulator can learn whatever the adv learns

Simulator

IDEAL REAL

A
R


A

I

x2 y2 x2y2

Simulation Paradigm

x1 y1 x1 y1

“as correct & private as”

Correctness: The output of every player in ideal is the same as in real

Privacy: The simulator can learn whatever the adv learns

Simulator

IDEAL REAL

A
R


A

I

x2 y2 x2y2

Simulation Paradigm

x1 y1 x1 y1

“as correct & private as”

Correctness: The output of every player in ideal is the same as in real

Privacy: The simulator can learn whatever the adv learns

Simulator

In this talk, we focus on static malicious corruption

The Concurrent Model

The Concurrent Model

MANY sets of players executing
MANY different protocols all at once

[DDN, DNS, GK, Fe, KPR, RK, CKPR, KP, PRS, C...and many others]

The Concurrent Model

MANY sets of players executing
MANY different protocols all at once

[DDN, DNS, GK, Fe, KPR, RK, CKPR, KP, PRS, C...and many others]

IDEAL REAL

Concurrent Security (informally)



Many executions of
different protocols

Many executions with
INDEPENDENT trusted parties

IDEAL REAL

Concurrent Security (informally)



Many executions of
different protocols

Many executions with
INDEPENDENT trusted parties

Universal Composibility (UC) [Can00]

IDEAL REAL

Concurrent Security (informally)



Many executions of
different protocols

Many executions with
INDEPENDENT trusted parties

Universal Composibility (UC) [Can00]
 Impossible [CF01, CKF03]

IDEAL REAL

Super Polynomial Time Simulation (SPS)



IDEAL REAL

Super Polynomial Time Simulation (SPS)



— SPS [Pas03, BS05, LPV09, GGJS12]

IDEAL REAL

Super Polynomial Time Simulation (SPS)



— SPS [Pas03, BS05, LPV09, GGJS12]

IDEAL REAL

Super Polynomial Time Simulation (SPS)



— SPS [Pas03, BS05, LPV09, GGJS12]

— Angel-based Security Model [PS04, MMY06]

— UC with super-poly helpers [CLP10]

IDEAL REAL

Super Polynomial Time Simulation (SPS)



— SPS [Pas03, BS05, LPV09, GGJS12]

Feasibility Results Only

— Angel-based Security Model [PS04, MMY06]

— UC with super-poly helpers [CLP10]

Super Polynomial time (SPS) Security

Feasibility Results Only

Due to the Non-Black-Box constructions
(Lots of Karp reductions)

Super Polynomial time (SPS) Security

Feasibility Results Only

Naturally,
Solution: Black-box Constructions

(No Karp reductions)

Super Polynomial time (SPS) Security

Feasibility Results Only

Naturally,
Solution: Black-box Constructions

(No Karp reductions)

Efficient Protocols

BB MPC Protocols

In the stand alone setting---Solved!

 O(1) round BB MPC, f/ minimal assumption semi-honest OT

 [Kil88,IPS08,IKLP06,Hai08,Wee10,Goy11]

BB MPC Protocols

In the stand alone setting---Solved!

 O(1) round BB MPC, f/ minimal assumption semi-honest OT

 [Kil88,IPS08,IKLP06,Hai08,Wee10,Goy11]

In the concurrent setting

 Only unconditionally secure UC protocols f/ strong set-ups

 e.g. Ideal OT [Kil88,IPS08], hardware tokens [GISVW10]

BB MPC Protocols

Can we have
BB concurrently secure protocols

in the plain model?

In the stand alone setting---Solved!

 O(1) round BB MPC, f/ minimal assumption semi-honest OT

 [Kil88,IPS08,IKLP06,Hai08,Wee10,Goy11]

In the concurrent setting

 Only unconditionally secure UC protocols f/ strong set-ups

 e.g. Ideal OT [Kil88,IPS08], hardware tokens [GISVW10]

BB MPC Protocols

Our Result (informal) :

BB construction of concurrently secure MPC protocols

• In the plain model

• Based on minimal assumption Semi-Honest OT

• Security in the UC with super-poly helper model

• Implies super-polynomial time simulation security

• Closed under universal composition

Yes!

Our Result (informal) :

BB construction of concurrently secure MPC protocols

• In the plain model

• Based on minimal assumption Semi-Honest OT

• Security in the UC with super-poly helper model

• Implies super-polynomial time simulation security

• Closed under universal composition

Yes!

How?

Any Functionality

Ideal Oblivious Transfer Box FOT

[Kil88,IPS08,GMW87,BGW88]:

Unconditional UC-security

Any Functionality

Ideal Oblivious Transfer Box FOT

[Kil88,IPS08,GMW87,BGW88]:

Unconditional UC-security

Stand-alone Semi-honest OT SH-OT

BB

Any Functionality

Ideal Oblivious Transfer Box FOT

[Kil88,IPS08,GMW87,BGW88]:

Unconditional UC-security

Stand-alone Semi-honest OT SH-OT

BB
[IKLP06,Hai08,Wee10,Goy11]

Stand-Alone Security

Any Functionality

Ideal Oblivious Transfer Box FOT

[Kil88,IPS08,GMW87,BGW88]:

Unconditional UC-security

This work

Stand-alone Semi-honest OT SH-OT

BB
UC with Super-Poly Helper

[IKLP06,Hai08,Wee10,Goy11]

Stand-Alone Security

Any Functionality

Ideal Oblivious Transfer Box FOT

[Kil88,IPS08,GMW87,BGW88]:

Unconditional UC-security

This work

Stand-alone Semi-honest OT SH-OT

BB

The main tool: BB CCA-Secure Commitments [CLP10]

UC with Super-Poly Helper

[IKLP06,Hai08,Wee10,Goy11]

Stand-Alone Security

CCA-Secure Commitments

CCA-Secure Commitments

The commitment analogue of CCA2 encryption.

CCA-Secure Commitments

A C(x) C(y1) O
C(y2)

C(y3)

The commitment analogue of CCA2 encryption.

CCA-Secure Commitments

A C(x) C(y1)

O is a committed-value oracle

If valid com, y = the committed value

Else if invalid com, y = bot

O
C(y2)

C(y3)

y1

y2

y3

The commitment analogue of CCA2 encryption.

CCA-Secure Commitments

A C(x) C(y1)

O is a committed-value oracle

If valid com, y = the committed value

Else if invalid com, y = bot

O
C(y2)

C(y3)

y1

y2

y3

The commitment analogue of CCA2 encryption.

Note: Original definition in [CLP10] considers a decommitment oracle.

(with black-box construction, we can only achieve the weaker notion.)

CCA-Secure Commitments

A C(x) C(y1)

Chosen-Commitment-Attack (CCA) security:

Either A forwards the left commitment to the right

Or LHS is hiding --- view of A indistinguishable

O
C(y2)

C(y3)

y1

y2

y3

The commitment analogue of CCA2 encryption.

Concurrent Non-Malleable Commitments

A C(x) C(y1)

C(y2)

C(y3)

Concurrent Non-Malleable Commitments

A C(x) C(y1)

Non-Malleability

Either A copies the left commitment to the right
Or x and (y1, y2, y3) independent
 --- view of A + (y1, y2, y3) indistinguishable

C(y2)

C(y3)

Concurrent Non-Malleable Commitments

A C(x) C(y1)

Non-Malleability

Either A copies the left commitment to the right
Or x and (y1, y2, y3) independent
 --- view of A + (y1, y2, y3) indistinguishable

C(y2)

C(y3)

O y1 y2 y3

Concurrent Non-Malleable Commitments

A C(x) C(y1)

Non-Malleability

Either A copies the left commitment to the right
Or x and (y1, y2, y3) independent
 --- view of A + (y1, y2, y3) indistinguishable

C(y2)

C(y3)

CCA security  Non-Malleability

O y1 y2 y3

Theorem 1: OWF  BB construction of CCA commitments

Theorem 1: OWF  BB construction of CCA commitments

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

Theorem 1: OWF  BB construction of CCA commitments

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

Proof: [CLP10]---Non-BB CCA commitments

 + [PW08]---BB trapdoor commitments

 + [CDMW08,09]---Cut & choose for consistency

Theorem 1: OWF  BB construction of CCA commitments

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

Proof: [CLP10]---Non-BB CCA commitments

 + [PW08]---BB trapdoor commitments

 + [CDMW08,09]---Cut & choose for consistency

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

 1. CCA is the right notion for BB concurrent MPC protocols

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

 1. CCA is the right notion for BB concurrent MPC protocols

2. Assuming “AES” is a CCA commitment

  Efficient Constant-round BB concurrent MPC protocols

Theorem 2: CCA commitments + SH-OT

  BB implementation of FOT

 1. CCA is the right notion for BB concurrent MPC protocols

2. Assuming “AES” is a CCA commitment

  Efficient Constant-round BB concurrent MPC protocols

Theorem 2: CCA + SH-OT  BB implementation of FOT,

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

R(b)

S (m0m1)

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Want: Enforce R behave honestly in OTs

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Want: Enforce R behave honestly in OTs

ZK proof R acts honestly

Theorem 2: CCA + mS-OT  BB implementation of FOT

Non-BB Solution

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Want: Enforce R behave honestly in OTs

BB Solution:
Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Want: Enforce R behave honestly in OTs

T [2n], |T| = n BB Solution:

Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Want: Enforce R behave honestly in OTs

Open Randomness in OTk for k  T

T [2n], |T| = n BB Solution:

Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Open Randomness in OTk for k  T

T [2n], |T| = n BB Solution:

Cut & Choose

Cut & Choose  R behave honestly in most OTs [IKLP06,Wee10]

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

OT Combiner

Open Randomness in OTk for k  T

T [2n], |T| = n BB Solution:

Cut & Choose

Cut & Choose  R behave honestly in most OTs [IKLP06,Wee10]

Theorem 2: CCA + mS-OT  BB implementation of FOT

Malicious Sender OT (ms-OT)---OT secure for malicious sender & SH receiver

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

Open Randomness in OTk for k  T

T [2n], |T| = n BB Solution:

Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

To prove security against a malicious sender,

Simulator needs to bias the set T to be cut

To prove security against a malicious sender,

Simulator needs to bias the set T to be cut

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

BB Solution:
Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

r’

open to r

ExtCom(r)

Open Randomness in OTk for k  T

To prove security against a malicious sender,

Simulator needs to bias the set T to be cut

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

BB Solution:
Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

r’

open to r

ExtCom(r)

Open Randomness in OTk for k  T

T = r XOR r’

Using Coin Tossing,

Simulator can bias the set T to be cut

OT1 OTk

R(b)

S (m0m1)

OT2n
2n ms-OT executions
with random inputs

BB Solution:
Cut & Choose

Theorem 2: CCA + mS-OT  BB implementation of FOT

r’

open to r

ExtCom(r)

Open Randomness in OTk for k  T

T = r XOR r’

Informally, SH-OT + Coin-Tossing
 Ideal OT in stand-alone setting [IKLP06,Wee10]

In the concurrent setting,
Main issue: simulation-sound coin tossing

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

42

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

42

42

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

42

42 Random!

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

Informally, SH-OT + simulation sound coin tossing
 Ideal OT in concurrent setting

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

42

42 Random!

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

Informally, SH-OT + simulation sound coin tossing
 Ideal OT in concurrent setting

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

42

42 Random!

In the concurrent setting,
Main issue: simulation-sound coin tossing

No adv can bias the coin tossing results,
 even when the simulator is doing so

Informally, SH-OT + simulation sound coin tossing
 Ideal OT in concurrent setting

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

r’

open to r

ExtCom(r)

42

42 Random!

Concurrent Coin Tossing from CCA

Concurrent Coin Tossing from CCA

r’

open to r

ExtCom(r)

Concurrent Coin Tossing from CCA

r’

open to r

CCACom(r)

Concurrent Coin Tossing from CCA

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

Concurrent Coin Tossing from CCA

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

Simulator can bias coins, by using oracle to break CCACom from adv

O

Concurrent Coin Tossing from CCA

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

Simulator can bias coins, by using oracle to break CCACom from adv

The adv cannot bias coins, as the CCACom from honest player is still hiding

O

Concurrent Coin Tossing from CCA

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

r’

open to r

CCACom(r)

Simulator can bias coins, by using oracle to break CCACom from adv

The adv cannot bias coins, as the CCACom from honest player is still hiding

O

Theorem 2: CCA + SH-OT  BB implementation of FOT

Our Result (informal) :

BB construction of concurrently secure MPC protocols

• In the plain model

• Assuming Semi-Honest Oblivious Transfer protocols

• Security in the UC with super-poly helper model [CLP10]

• Implies SPS security

• Closed under universal composition

Our Result (informal) :

BB construction of concurrently secure MPC protocols

• In the plain model

• Assuming Semi-Honest Oblivious Transfer protocols

• Security in the UC with super-poly helper model [CLP10]

• Implies SPS security

• Closed under universal composition

BB CCA Commitments

Our Result (informal) :

BB construction of concurrently secure MPC protocols

• In the plain model

• Assuming Semi-Honest Oblivious Transfer protocols

• Security in the UC with super-poly helper model [CLP10]

• Implies SPS security

• Closed under universal composition

BB CCA Commitments

Our Result (informal) :

BB construction of concurrently secure MPC protocols

• In the plain model

• Assuming Semi-Honest Oblivious Transfer protocols

• Security in the UC with super-poly helper model [CLP10]

• Implies SPS security

• Closed under universal composition

BB CCA Commitments
O(n)-round, better round-complexity?

Thank you!

