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Correctness: The output of every player in ideal is the same as in real 

Privacy: The simulator can learn whatever the adv learns 
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In this talk, we focus on static malicious corruption 
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Note: Original definition in [CLP10] considers a decommitment oracle. 

(with black-box construction, we can only achieve the weaker notion.) 
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BB construction of concurrently secure MPC protocols 

• In the plain model 

• Assuming Semi-Honest Oblivious Transfer protocols 

• Security in the UC with super-poly helper model [CLP10] 

• Implies SPS security 
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BB CCA Commitments 
O(n)-round, better round-complexity? 



Thank you!  


