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Motivation

e Hash functions based on block ciphers
e Davies-Meyer '84, PGV '93, Tandem-DM '92, ...
e MD5 '92, SHA-1 '95, SHA-2 '01, Blake '08, Skein '08, ...
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Motivation

e Hash functions based on block ciphers
e Davies-Meyer '84, PGV '93, Tandem-DM '92, ...
e MD5 '92, SHA-1 '95, SHA-2 '01, Blake '08, Skein '08, ...

e Re-keying — related-key security, efficiency loss, ...

e Instead use fixed-key block ciphers, or permutations
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Motivation

e Black-Cochran-Shrimpton '05: -

no secure 2n-to-n-bit function ﬁ
using 1 n-bit permutation call
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Motivation

e Black-Cochran-Shrimpton '05: -
no secure 2n-to-n-bit function ﬁ
using 1 n-bit permutation call

F

o Generalized by Rogaway-Steinberger '08, Stam '08, Steinberger "10

e mn-to-rn-bit function using k n-bit permutations: collisions in
(2m)t=(m=r+1)/(k+1) queries (almost always)
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Security Model
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e Ideal permutation model: m;'s randomly generated

e Adversary query access to m;'s
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Security Model

—1

‘ \ q queries
—_—

adversary A

distinct (21, 22), (2], 25) s.t.

e Ideal permutation model: m;'s randomly generated

e Adversary query access to m;'s

AdvE'(q) = max success probability A
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Security Model

—1

‘ \ q queries

2e{0,1}" —— adversary A —— (1), 1) st. F(wy,19) = 2

e Ideal permutation model: m;'s randomly generated

e Adversary query access to m;'s

AdvE'(q) = max success probability A

AdvP™(q) = max »/elﬁ)ai(}” success probability .4
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Prior Constructions — Shrimpton-Stam '08

n () <> ’In Z
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e 2n-to-n-bit function using 3 one-way functions

e Optimal collision security

e Collision security if fj(z) = m;(x) ® = (showed by automated analysis)
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Prior Constructions — Rogaway-Steinberger '08

e 2n-to-n-bit function (over Fon) using 3 permutations
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Prior Constructions — Rogaway-Steinberger '08

e 2n-to-n-bit function (over Fon) using 3 permutations
e Collision/preimage security if a;; satisfy “independence criterion”
— Excludes binary a;;
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Our Compression Function Design

e 2n-to-n compression function using permutations and )-operators
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Our Compression Function Design
e 2n-to-n compression function using permutations and )-operators
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e Multi-permutation setting: 7;'s all different
e Single-permutation setting: w1 = my = 73
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Equivalence Classes

Definition: Equivalence Class

Compression functions F and F’ are equivalent if for both collision and
preimage security there exists a tight bi-directional reduction

e Intuition: F and F’ equivalent — ‘equally secure’
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Equivalence Classes

Definition: Equivalence Class

Compression functions F and F’ are equivalent if for both collision and
preimage security there exists a tight bi-directional reduction

e Intuition: F and F’ equivalent — ‘equally secure’

e We identify 4 equivalence reductions
e Example reduction of previous slide
e 3 extra reductions

e We restrict to equivalence w.r.t. these reductions only
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Multi-Permutation Setting — Main Result
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Multi-Permutation Setting — Main Result
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Multi-Permutation Setting — Proof Idea (1)
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Multi-Permutation Setting — Proof Idea (1)
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e In total 2'* schemes, but many trivially insecure
e Function is “valid” if each green set contains a 1

e We consider valid compression functions only
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Multi-Permutation Setting — Proof Idea (2)
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Multi-Permutation Setting — Proof Idea (2)
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e Any valid F equivalent to some F’ with
(allaa:l?) = (150) and ((IQl,CLQQ,an) = (07 170)
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Multi-Permutation Setting — Proof Idea (2)
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e Any valid F equivalent to some F’ with
(alla al?) — (]-a 0) and (CL21, a2, a23) — (07 17 0)
e |t suffices to consider these functions only
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Multi-Permutation Setting — Proof Idea (3)
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Multi-Permutation Setting — Proof Idea (3)
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e Four generic attacks
(az1 + ass)(ass + asg) =0 = collision in 2"*/* queries
V4_, as; = as; =0 = collision in 2"/% queries
/\32-:1 as;ja4, j+2 7é as j4+204; = collision in on/3 queries
as1 + aao + as3 + ags = 1 = collision in 22"/° queries
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Multi-Permutation Setting — Proof Idea (3)
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e Four generic attacks
(az1 + ass)(ass + asg) =0 = collision in 2"*/* queries
V4_, agj = ay; =0 = collision in 2"/% queries
/\?:1 as;ja4, j+2 7é as j4+204; = collision in 2"/3 queries
as1 + aao + as3 + ags = 1 = collision in 22"/° queries

e F is collision secure only if equivalent to F1,Fo, F3, Fy

13/18



Multi-Permutation Setting — Proof Idea (4)
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e F is collision secure only if it is equivalent to F1,Fo, F3, Fy
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Multi-Permutation Setting — Proof Idea (4)

_ -~ 7=« _ (only for
/_\h // \\ Fg.Fg,F4)
, N
I Z

AN (only for
\ F3.F1)

N _ 7 (only for
~~__--" Fi.FyFy)

e F is collision secure only if it is equivalent to F1,Fo, F3, Fy

e Remains to prove: if-relation and preimage resistance
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Multi-Permutation Setting — Proof Idea (4)
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N _ 7 (only for
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e F is collision secure only if it is equivalent to F1,Fo, F3, Fy

e Remains to prove: if-relation and preimage resistance

e Hardest and most technical part
e Fy,...,Fy collision resistant up to 2"/? queries tight (asympt.)
e F, preimage resistant up to 22""/3 queries tight (asympt.)
e Fi,F3,F4 preimage resistant up to 2"/2 queries tight

14/18



Multi-Permutation Setting — Conjecture

Z : set of ¢ random elements from {0, 1}" (duplicates may occur)
X,Y :any two sets of ¢ elements from {0, 1}" (no duplicates)

With high probability, there exist O(qlog q) tuples
(,y,2) € X XY x Zsuchthat z @y =z

e Conjecture relates to area of extremal graph theory

e Similar to (but more complex than) a longstanding problem of
Zarankiewicz from 1951

e Detailed heuristical argument in paper
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Single-Permutation Setting — Main Result
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For any compression function of this form, collisions
can be found in 22/5 queries (proof is similar)
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Single-Permutation Setting — Main Result
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For any compression function of this form, collisions
can be found in 22/5 queries (proof is similar)
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Conclusions

Complete classification of 2n-to-n-bit compression functions
solely based on three permutations and €p-operators

e Multi-permutation setting: analysis of 2'* functions

e 216 functions optimally collision secure
e 48 of which optimally preimage secure

e Single-permutation setting: non-existence of collision secure F
o Attack on 2 (or in fact 247214) functions
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Conclusions

Complete classification of 2n-to-n-bit compression functions
solely based on three permutations and €p-operators

e Multi-permutation setting: analysis of 2'* functions
e 216 functions optimally collision secure
o 48 of which optimally preimage secure

e Single-permutation setting: non-existence of collision secure F
o Attack on 2 (or in fact 247214) functions

e Research directions:
e Generalize to larger F's, and with different primitives
o Generalize impossibility result in single-permutation setting

e Conjecture

Thank you for your attention!
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Supporting slides
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Summary of Our Results
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collision preimage
F equivalent to: security attack security attack
F1,F4 on/2 [c] on/2 on/2 on/2
Fo on/2 [ on/2 92n/3 [c] 92n/3
Fs on/2 on/2 on/2 on/2
none of these ? 22n/5 ? ?
any F in SP-setting ? 22n/5 ? ?
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