
Multi-Instance Security and its

Application to Password-

Based Cryptography

Joint work with

Mihir Bellare (UC San Diego)

Thomas Ristenpart (Univ. of Wisconsin)

Stefano Tessaro

MIT

Scenario: File encryption



Want to store data in encrypted form using

symmetric encryption.

Scenario: File encryption

 Keys need to be securely stored for later decryption

Want to store data in encrypted form using

symmetric encryption.

Scenario: File encryption

 Keys need to be securely stored for later decryption

Want to store data in encrypted form using

symmetric encryption.

Alternative solution:

Password-based cryptography.

Password-based encryption

Password-based encryption

Used widely: Winzip, OpenOffice, Mac OS X

FileVault,TrueCrypt, WiFi WPA (PBKDF), …

Password-based encryption

𝑲 = 𝟎𝟏𝟎𝟎𝟏𝟏𝟎𝟏 ……… . . 𝟎𝟏𝟎𝟏𝟎𝟏𝟎𝟏𝟎𝟏

KDF

q1w2e3

Used widely: Winzip, OpenOffice, Mac OS X

FileVault,TrueCrypt, WiFi WPA (PBKDF), …

Key-derivation function

Password-based encryption

𝑲 = 𝟎𝟏𝟎𝟎𝟏𝟏𝟎𝟏 ……… . . 𝟎𝟏𝟎𝟏𝟎𝟏𝟎𝟏𝟎𝟏

KDF

q1w2e3

Used widely: Winzip, OpenOffice, Mac OS X

FileVault,TrueCrypt, WiFi WPA (PBKDF), …

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  KDF(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

Key-derivation function

Password-based encryption

ENC(𝑲,𝑀)

𝑲 = 𝟎𝟏𝟎𝟎𝟏𝟏𝟎𝟏 ……… . . 𝟎𝟏𝟎𝟏𝟎𝟏𝟎𝟏𝟎𝟏

KDF

q1w2e3

Used widely: Winzip, OpenOffice, Mac OS X

FileVault,TrueCrypt, WiFi WPA (PBKDF), …

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  KDF(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

Key-derivation function

Problem: Weak passwords are unavoidable

Problem: Weak passwords are unavoidable

Problem: Weak passwords are unavoidable

Mitigating dictionary attacks via iteration

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  Hc(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  Hc(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

Expectation:

Work 𝑵 to guess 𝑝𝑤  Work 𝐜 × 𝑵 to break PB-Encrypt

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  Hc(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

Expectation:

Work 𝑵 to guess 𝑝𝑤  Work 𝐜 × 𝑵 to break PB-Encrypt

𝑁 = 232

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  Hc(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

Expectation:

Work 𝑵 to guess 𝑝𝑤  Work 𝐜 × 𝑵 to break PB-Encrypt

𝑁 = 232 𝑁 × 𝑐 = 232 × 220 = 252

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  Hc(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

Expectation:

Work 𝑵 to guess 𝑝𝑤  Work 𝐜 × 𝑵 to break PB-Encrypt

𝑁 = 232 𝑁 × 𝑐 = 232 × 220 = 252

KDF = Hc

Mitigating dictionary attacks via iteration

… 𝑝𝑤 𝐾

c times

H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝐾  Hc(𝑝𝑤)

𝐶  ENC(𝐾,𝑀)

Return 𝐶

H ∶ {0,1}∗→ {0,1}𝑛 is cryptographic hash

function (e.g., SHA-256)

Expectation:

Work 𝑵 to guess 𝑝𝑤  Work 𝐜 × 𝑵 to break PB-Encrypt

𝑁 = 232 𝑁 × 𝑐 = 232 × 220 = 252

KDF = Hc

PB-Encryption in the multi-user setting

Real world has multiple users:

PB-Encryption in the multi-user setting

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

Real world has multiple users:

PB-Encryption in the multi-user setting

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

Real world has multiple users:

PB-Encryption in the multi-user setting

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

Real world has multiple users:

PB-Encryption in the multi-user setting

Work 𝒄 × 𝑵 to retrieve 𝑀1

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

𝑀1

Real world has multiple users:

PB-Encryption in the multi-user setting

Work 𝒄 × 𝑵 to retrieve 𝑀1

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

𝑀1

Real world has multiple users:

PB-Encryption in the multi-user setting

Work 𝒄 × 𝑵 to retrieve 𝑀1

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

𝑀1 𝑀2

Additional work to retrieve 𝑀2?

Real world has multiple users:

PB-Encryption in the multi-user setting

Work 𝒄 × 𝑵 to retrieve 𝑀1

𝐶1 ← PB−Encrypt(𝑝𝑤1, 𝑀1)

𝐶2 ← PB−Encrypt(𝑝𝑤2, 𝑀2)

𝐶3 ← PB−Encrypt(𝑝𝑤3, 𝑀3)

𝑀1 𝑀2

Additional work to retrieve 𝑀2?

Ideally: Work 𝒎× 𝐜 × 𝑵 to retrieve 𝒎 plaintexts!

Real world has multiple users:

Multi-instance security amplification

Not true in general:

Multi-instance security amplification

Not true in general:

Multi-instance security amplification

c times

… H H H 𝑝𝑤1 𝐾1

Not true in general:

Multi-instance security amplification

c times

… H H H 𝑝𝑤1 𝐾1

… H H H 𝑝𝑤𝑁 𝐾𝑁

…

Not true in general:

Multi-instance security amplification

c times

… H H H 𝑝𝑤1 𝐾1

… H H H 𝑝𝑤𝑁 𝐾𝑁

…

Work 𝑵 × 𝒄 + Work 𝑵 / ciphertext = 𝑵 × 𝒄 +𝒎 vs 𝑵× 𝒄 ×𝒎

Not true in general:

Multi-instance security amplification

c times

… H H H 𝑝𝑤1 𝐾1

… H H H 𝑝𝑤𝑁 𝐾𝑁

…

Work 𝑵 × 𝒄 + Work 𝑵 / ciphertext = 𝑵 × 𝒄 +𝒎 vs 𝑵× 𝒄 ×𝒎

Not true in general:

New design goal: Multi-instance security amplification

“Hardness of breaking multiple instances must increase

linearly in the number of instances.”

PKCS#5 – Password-based cryptography standard

Salting as suggested in PKCS#5 prevents attack

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

Salting as suggested in PKCS#5 prevents attack

KDF1:

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

Randomly chosen per KDF

evaluation

Salting as suggested in PKCS#5 prevents attack

KDF1:

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Randomly chosen per KDF

evaluation

Salting as suggested in PKCS#5 prevents attack

KDF1:

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Randomly chosen per KDF

evaluation

Salting as suggested in PKCS#5 prevents attack

KDF1:

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Randomly chosen per KDF

evaluation

Salting as suggested in PKCS#5 prevents attack

KDF1:

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Randomly chosen per KDF

evaluation

Allows decryption

Salting as suggested in PKCS#5 prevents attack

KDF1:

PKCS#5 – Password-based cryptography standard

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Randomly chosen per KDF

evaluation

Allows decryption

Question: Does salting provably ensure multi-

instance security amplification?

Salting as suggested in PKCS#5 prevents attack

KDF1:

Iteration and salting in the real world

No salting!

No

iteration!

Our results

Our results

Question: Does salting provably ensure multi-instance

security amplification?

Our results

Question: Does salting provably ensure multi-instance

security amplification?

Answer: We do not really know!

Our results

Question: Does salting provably ensure multi-instance

security amplification?

Answer: We do not really know!

1) No formal proof!

Our results

Question: Does salting provably ensure multi-instance

security amplification?

Answer: We do not really know!

1) No formal proof!

2) No formal model!

Our results

Our contributions:

1) General definitional framework for multi-instance

security of arbitrary cryptographic primitives.

2) Case study: Security analysis of PKCS#5 within our

framework.

Question: Does salting provably ensure multi-instance

security amplification?

Answer: We do not really know!

1) No formal proof!

2) No formal model!

Outline

1. Multi-instance security

2. Security of PKCS#5 – A case study

Outline

1. Multi-instance security

2. Security of PKCS#5 – A case study

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

LOR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

LOR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

LOR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

 𝐀𝐝𝐯lor 𝐴 = 2 × [Pr 𝒃 = 𝒃′ − 1 2]

LOR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

 𝐀𝐝𝐯lor 𝐴 = 2 × [Pr 𝒃 = 𝒃′ − 1 2]

LOR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

 𝐀𝐝𝐯lor 𝐴 = 2 × [Pr 𝒃 = 𝒃′ − 1 2]

LOR-Security

𝑝𝑤 ← 𝑃𝑊𝐷

PWR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

 𝐀𝐝𝐯lor 𝐴 = 2 × [Pr 𝒃 = 𝒃′ − 1 2]

𝐄𝐍𝐂(𝒑𝒘,𝒎)

𝒎

LOR-Security

𝑝𝑤 ← 𝑃𝑊𝐷

PWR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

 𝐀𝐝𝐯lor 𝐴 = 2 × [Pr 𝒃 = 𝒃′ − 1 2]

𝒑𝒘′

𝐄𝐍𝐂(𝒑𝒘,𝒎)

𝒎

LOR-Security

𝑝𝑤 ← 𝑃𝑊𝐷

PWR-Security

Single-instance security – PB-Encryption

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒃′

𝐄𝐍𝐂(𝒑𝒘,𝒎𝒃)

𝒎𝟎,𝒎𝟏
|𝒎𝟎| = |𝒎𝟏|

 𝐀𝐝𝐯lor 𝐴 = 2 × [Pr 𝒃 = 𝒃′ − 1 2]

𝒑𝒘′

𝐄𝐍𝐂(𝒑𝒘,𝒎)

𝒎

LOR-Security

𝑝𝑤 ← 𝑃𝑊𝐷

PWR-Security

 𝐀𝐝𝐯pwr 𝐴 = Pr[𝒑𝒘′ = 𝒑𝒘]

The multi-instance (mi) security vista

 Our goal: Define security metric for scheme S wrt

property P to measure success of an adversary that:

 instances of the scheme concurrently.

 Corrupts up to 𝑡 < 𝑚 instances of the scheme (e.g.,

learns passwords).

 Wins if it breaks P for all uncorrupted instances.

The multi-instance (mi) security vista

 Our goal: Define security metric for scheme S wrt

property P to measure success of an adversary that:

 Attacks 𝑚 instances of the scheme concurrently.

 Corrupts up to 𝑡 < 𝑚 instances of the scheme (e.g.,

learns passwords).

 Wins if it breaks P for all uncorrupted instances.

The multi-instance (mi) security vista

 < 𝑚𝑚 instances of the scheme (e.g., learns passwords).

 Our goal: Define security metric for scheme S wrt

property P to measure success of an adversary that:

 Attacks 𝑚 instances of the scheme concurrently.

 Corrupts up to 𝑡 < 𝑚 instances of the scheme (e.g.,

learns passwords).

 Wins if it breaks P for all uncorrupted instances.

The multi-instance (mi) security vista

 < 𝑚𝑚 instances of the scheme (e.g., learns passwords).

 Our goal: Define security metric for scheme S wrt

property P to measure success of an adversary that:

 Attacks 𝑚 instances of the scheme concurrently.

 Wins if it breaks P for all uncorrupted instances.

 Wins if it breaks P for all uncorrupted instances.

PWR security

PWR security

𝑝𝑤3 ← 𝑃𝑊𝐷

𝑝𝑤1 ← 𝑃𝑊𝐷

𝑝𝑤2 ← 𝑃𝑊𝐷

PWR security

𝑝𝑤3 ← 𝑃𝑊𝐷

𝑝𝑤1 ← 𝑃𝑊𝐷

𝑝𝑤2 ← 𝑃𝑊𝐷

PWR security

𝑝𝑤3 ← 𝑃𝑊𝐷

𝑝𝑤1 ← 𝑃𝑊𝐷

𝑝𝑤2 ← 𝑃𝑊𝐷

PWR security

𝑝𝑤3 ← 𝑃𝑊𝐷

𝑝𝑤1 ← 𝑃𝑊𝐷

𝑝𝑤2 ← 𝑃𝑊𝐷

PWR security

𝑝𝑤3 ← 𝑃𝑊𝐷

𝑝𝑤1 ← 𝑃𝑊𝐷

𝑝𝑤2 ← 𝑃𝑊𝐷

(𝒑𝒘𝟏
′ , 𝒑𝒘𝟐

′ , 𝒑𝒘𝟑
′)

PWR security

𝑝𝑤3 ← 𝑃𝑊𝐷

𝑝𝑤1 ← 𝑃𝑊𝐷

𝑝𝑤2 ← 𝑃𝑊𝐷

(𝒑𝒘𝟏
′ , 𝒑𝒘𝟐

′ , 𝒑𝒘𝟑
′)

 𝐀𝐝𝐯𝐦−𝐩𝐰𝐫 𝐴 = Pr[𝒑𝒘1
′ = 𝒑𝒘𝟏, … , 𝒑𝒘𝑚

′ = 𝒑𝒘𝒎]

𝑏3 ← 0,1
𝑝𝑤3 ← 𝑃𝑊𝐷

LOR security

𝑏1 ← 0,1
𝑝𝑤1 ← 𝑃𝑊𝐷

𝑏2 ← 0,1
𝑝𝑤2 ← 𝑃𝑊𝐷

𝑏3 ← 0,1
𝑝𝑤3 ← 𝑃𝑊𝐷

LOR security

𝑏1 ← 0,1
𝑝𝑤1 ← 𝑃𝑊𝐷

𝑏2 ← 0,1
𝑝𝑤2 ← 𝑃𝑊𝐷

𝑏3 ← 0,1
𝑝𝑤3 ← 𝑃𝑊𝐷

LOR security

𝑏1 ← 0,1
𝑝𝑤1 ← 𝑃𝑊𝐷

𝑏2 ← 0,1
𝑝𝑤2 ← 𝑃𝑊𝐷

𝑏3 ← 0,1
𝑝𝑤3 ← 𝑃𝑊𝐷

LOR security

𝑏1 ← 0,1
𝑝𝑤1 ← 𝑃𝑊𝐷

𝑏2 ← 0,1
𝑝𝑤2 ← 𝑃𝑊𝐷

 𝐀𝐝𝐯𝐦−𝐥𝐨𝐫 𝐴 =?

Defining mi security for encryption

Attempt #1: AND-advantage

Defining mi security for encryption

Attempt #1: AND-advantage

LORA-security:

Advantage:

𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝐚 𝐴 = 𝐏𝐫[𝒃𝟏, … , 𝒃𝒎 = 𝒃𝟏
′ , … , 𝒃𝒎

′]

Output: 𝒃𝟏
′ , … , 𝒃𝒎

′

Defining mi security for encryption

Attempt #1: AND-advantage

LORA-security:

Advantage:

𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝐚 𝐴 = 𝐏𝐫[𝒃𝟏, … , 𝒃𝒎 = 𝒃𝟏
′ , … , 𝒃𝒎

′]

Output: 𝒃𝟏
′ , … , 𝒃𝒎

′

Problem: Does not measure hardness of winning all

uncorrupted instances.

Defining mi security for encryption

Attempt #1: AND-advantage

LORA-security:

Advantage:

𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝐚 𝐴 = 𝐏𝐫[𝒃𝟏, … , 𝒃𝒎 = 𝒃𝟏
′ , … , 𝒃𝒎

′]

Output: 𝒃𝟏
′ , … , 𝒃𝒎

′

Problem: Does not measure hardness of winning all

uncorrupted instances.

Reason: If ∃ adversary with

𝐏𝐫[𝒃𝟏 = 𝒃𝟏
′] > 3/4

Then ∃ adversary guessing second bit at random, with

𝐏𝐫 𝒃𝟏, 𝒃𝟐 = 𝒃𝟏
′ , 𝒃𝟐

′ > 3 4 × 1 2 = 3/8

Defining mi security for encryption

Attempt #1: AND-advantage

LORA-security:

Advantage:

𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝐚 𝐴 = 𝐏𝐫[𝒃𝟏, … , 𝒃𝒎 = 𝒃𝟏
′ , … , 𝒃𝒎

′]

Output: 𝒃𝟏
′ , … , 𝒃𝒎

′

Problem: Does not measure hardness of winning all

uncorrupted instances.

Reason: If ∃ adversary with

𝐏𝐫[𝒃𝟏 = 𝒃𝟏
′] > 3/4

Then ∃ adversary guessing second bit at random, with

𝐏𝐫 𝒃𝟏, 𝒃𝟐 = 𝒃𝟏
′ , 𝒃𝟐

′ > 3 4 × 1 2 = 3/8

Defining mi security for encryption

Attempt #2: XOR-advantage

Defining mi security for encryption

Attempt #2: XOR-advantage

LORX-security:

Advantage:
𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝒙 𝐴 = 2 × 𝐏𝐫 𝒃′ = 𝒃𝟏 ⊕⋯⊕𝒃𝒎 − 1/2

Output: 𝒃′

Defining mi security for encryption

Attempt #2: XOR-advantage

LORX-security:

Advantage:
𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝒙 𝐴 = 2 × 𝐏𝐫 𝒃′ = 𝒃𝟏 ⊕⋯⊕𝒃𝒎 − 1/2

Output: 𝒃′

Reason: If ∃ adversary with

𝐏𝐫 𝒃′ = 𝒃𝟏 >
1 + 𝜀

2

Then: Adversary guessing second bit has no advantage

𝐏𝐫 𝒃′ = 𝒃𝟏 ⊕𝒃𝟐 =
1

2

Mi security notions – Relations

m-LORX m-LORA

m-PWR

Mi security notions – Relations

m-LORX m-LORA

m-PWR

(1)

Mi security notions – Relations

m-LORX m-LORA

m-PWR

(1)

Mi security notions – Relations

m-LORX m-LORA

m-PWR

(1)

1) Holds in most cases – proof relies on probabilistic lemma

from [U09].

Mi security notions – Relations

m-LORX m-LORA

m-PWR

(1)

(2)

1) Holds in most cases – proof relies on probabilistic lemma

from [U09].

Mi security notions – Relations

m-LORX m-LORA

m-PWR

(1)

(2)

1) Holds in most cases – proof relies on probabilistic lemma

from [U09].

2) Very loose asymptotic implication – based on Goldreich-

Levin Theorem [GL89]

Relations – LOR vs ROR

𝒃′

ENC(𝒑𝒘,𝒎𝒃)

𝑏 ← 0,1
𝑝𝑤 ← 𝑃𝑊𝐷

𝒎𝟎,𝒎𝟏

LOR-Security

ROR-Security

𝒃′

ENC(𝒑𝒘,𝒎𝒃)

𝑏 ← 0,1
𝑚1 ← 𝑀
𝑝𝑤 ← 𝑃𝑊𝐷

𝒎𝟎

Relations – LOR vs ROR

Relations – LOR vs ROR

Classical textbook theorem.

𝐀𝐝𝐯ror 𝒕 ≤ 𝐀𝐝𝐯lor 𝒕 ≤ 𝟐 × 𝐀𝐝𝐯ror 𝒕

Relations – LOR vs ROR

Classical textbook theorem.

𝐀𝐝𝐯ror 𝒕 ≤ 𝐀𝐝𝐯lor 𝒕 ≤ 𝟐 × 𝐀𝐝𝐯ror 𝒕

Hybrid argument

Relations – LOR vs ROR

Classical textbook theorem.

𝐀𝐝𝐯ror 𝒕 ≤ 𝐀𝐝𝐯lor 𝒕 ≤ 𝟐 × 𝐀𝐝𝐯ror 𝒕

Hybrid argument

L R L $ $ R + ≤

Relations – LOR vs ROR

Classical textbook theorem.

𝐀𝐝𝐯ror 𝒕 ≤ 𝐀𝐝𝐯lor 𝒕 ≤ 𝟐 × 𝐀𝐝𝐯ror 𝒕

Hybrid argument

Mi setting with m instances:
𝐀𝐝𝐯m−rorx 𝒕 ≤ 𝐀𝐝𝐯m−lorx 𝒕 ≤ 𝟐𝒎 × 𝐀𝐝𝐯m−rorx 𝒕

L R L $ $ R + ≤

Relations – LOR vs ROR

Classical textbook theorem.

𝐀𝐝𝐯ror 𝒕 ≤ 𝐀𝐝𝐯lor 𝒕 ≤ 𝟐 × 𝐀𝐝𝐯ror 𝒕

Hybrid argument

Mi setting with m instances:
𝐀𝐝𝐯m−rorx 𝒕 ≤ 𝐀𝐝𝐯m−lorx 𝒕 ≤ 𝟐𝒎 × 𝐀𝐝𝐯m−rorx 𝒕

L R L $ $ R + ≤

L R L $ $ R

+ ≤

L R L $ L $

$ R

$ R

+
L $

$ R

+

Relations – LOR vs ROR

Classical textbook theorem.

𝐀𝐝𝐯ror 𝒕 ≤ 𝐀𝐝𝐯lor 𝒕 ≤ 𝟐 × 𝐀𝐝𝐯ror 𝒕

Hybrid argument

Mi setting with m instances:
𝐀𝐝𝐯m−rorx 𝒕 ≤ 𝐀𝐝𝐯m−lorx 𝒕 ≤ 𝟐𝒎 × 𝐀𝐝𝐯m−rorx 𝒕

L R L $ $ R + ≤

L R L $ $ R

+ ≤

L R L $ L $

$ R

$ R

+
L $

$ R

+

Tight!

Outline

1. Multi-instance security

2. Security of PKCS#5 – A case study

Outline

1. Multi-instance security

2. Security of PKCS#5 – A case study

PKCS#5 – Defining KDF Security

PKCS#5 – Defining KDF Security

Question: Does salting provably ensures multi-

instance security amplification? YES!

PKCS#5 – Defining KDF Security

Question: Does salting provably ensures multi-

instance security amplification? YES!

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

PKCS#5 – Defining KDF Security

Question: Does salting provably ensures multi-

instance security amplification? YES!

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H

Main step:

Security analysis of KDF1 for case H = RO.

KDF Security in the ROM

RO KDF1

𝑝𝑤1||𝑠𝑎1, … , 𝑝𝑤𝑚||𝑠𝑎𝑚

𝐾1, … , 𝐾𝑚

KDF satisfies indifferentiability-like poperty [MRH04]

0/1

Sim Test

𝑝𝑤1||𝑠𝑎1, … , 𝑝𝑤𝑚||𝑠𝑎𝑚

𝐾1, … , 𝐾𝑚

0/1

∃Sim ∀ password distributions: Left ≈ Right

KDF Security in the ROM

RO KDF1

𝑝𝑤1||𝑠𝑎1, … , 𝑝𝑤𝑚||𝑠𝑎𝑚

𝐾1, … , 𝐾𝑚

KDF satisfies indifferentiability-like poperty [MRH04]

0/1

Sim Test

𝑝𝑤1||𝑠𝑎1, … , 𝑝𝑤𝑚||𝑠𝑎𝑚

𝐾1, … , 𝐾𝑚

0/1

𝑞 queries 𝑞 queries

∃Sim ∀ password distributions: Left ≈ Right

KDF Security in the ROM

RO KDF1

𝑝𝑤1||𝑠𝑎1, … , 𝑝𝑤𝑚||𝑠𝑎𝑚

𝐾1, … , 𝐾𝑚

KDF satisfies indifferentiability-like poperty [MRH04]

0/1

Sim Test

𝑝𝑤1||𝑠𝑎1, … , 𝑝𝑤𝑚||𝑠𝑎𝑚

𝐾1, … , 𝐾𝑚

0/1

𝑞 queries 𝑞 queries

∃Sim ∀ password distributions: Left ≈ Right

Final result: Security of PB-Encrypt

Question: Does salting deliver multi-instance

security amplification for PKCS#5? PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Theorem: ∀A making 𝑞 RO queries, ∃ B such that

𝐀𝐝𝐯PB−Encrypt
𝐦−𝐫𝐨𝐫𝐱 𝐴 <

𝑞

𝑚𝑐𝑁
 + 𝑚 ∙ 𝐀𝐝𝐯ENC

𝐫𝐨𝐫 𝐵 +
𝑞2

2𝑛

+

𝑞2

2𝑠

Final result: Security of PB-Encrypt

Question: Does salting deliver multi-instance

security amplification for PKCS#5? PB-Encrypt(𝑝𝑤,𝑀)

𝒔𝒂𝒍𝒕  {0,1}𝑠

𝐾  Hc(𝑝𝑤||𝒔𝒂𝒍𝒕)
𝐶  ENC(𝐾,𝑀)

Return 𝐶||𝒔𝒂𝒍𝒕

Theorem: ∀A making 𝑞 RO queries, ∃ B such that

𝐀𝐝𝐯PB−Encrypt
𝐦−𝐫𝐨𝐫𝐱 𝐴 <

𝑞

𝑚𝑐𝑁
 + 𝑚 ∙ 𝐀𝐝𝐯ENC

𝐫𝐨𝐫 𝐵 +
𝑞2

2𝑛

+

𝑞2

2𝑠

Work 𝑚 × 𝑐 × 𝑁 to break encryption (RO queries)

Concluding Remarks

Summary:











Concluding Remarks

Summary:

 The world has multiple users









Concluding Remarks

Summary:

 The world has multiple users

 Weak individual instances sometimes unavoidable







Concluding Remarks

Summary:

 The world has multiple users

 Weak individual instances sometimes unavoidable

 Mi security as a second line of defense





Concluding Remarks

Summary:

 The world has multiple users

 Weak individual instances sometimes unavoidable

 Mi security as a second line of defense

 Interesting technical questions



Concluding Remarks

Summary:

 The world has multiple users

 Weak individual instances sometimes unavoidable

 Mi security as a second line of defense

 Interesting technical questions

 First security analysis of PKCS#5 in the mi setting

Concluding Remarks

Summary:

 The world has multiple users

 Weak individual instances sometimes unavoidable

 Mi security as a second line of defense

 Interesting technical questions

 First security analysis of PKCS#5 in the mi setting

Thank you!

