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LORX-security: 

Advantage: 
𝐀𝐝𝐯𝐦−𝐥𝐨𝐫𝒙 𝐴 = 2 × 𝐏𝐫 𝒃′ = 𝒃𝟏 ⊕⋯⊕𝒃𝒎 − 1/2  

Output: 𝒃′ 

Reason: If ∃ adversary with 

𝐏𝐫 𝒃′ = 𝒃𝟏 >
1 + 𝜀

2
 

Then: Adversary guessing second bit has no advantage 

𝐏𝐫 𝒃′ = 𝒃𝟏 ⊕𝒃𝟐 =
1

2
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m-LORX m-LORA 

m-PWR 

(1) 

(2) 

1) Holds in most cases – proof relies on probabilistic lemma 

from [U09]. 

2) Very loose asymptotic implication – based on Goldreich-

Levin Theorem [GL89] 

 



Relations – LOR vs ROR 

𝒃′ 

ENC(𝒑𝒘,𝒎𝒃) 

𝑏 ← 0,1  
𝑝𝑤 ← 𝑃𝑊𝐷 

𝒎𝟎,𝒎𝟏 

LOR-Security 

ROR-Security 

𝒃′ 

ENC(𝒑𝒘,𝒎𝒃) 

𝑏 ← 0,1  
𝑚1 ← 𝑀 
𝑝𝑤 ← 𝑃𝑊𝐷 

𝒎𝟎 
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Tight! 
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Question: Does salting provably ensures multi-

instance security amplification? YES! 

… 𝑝𝑤||𝒔𝒂𝒍𝒕 𝐾 H H H 

Main step:  

Security analysis of KDF1 for case H = RO. 
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Work 𝑚 × 𝑐 × 𝑁 to break encryption (RO queries) 
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Thank you! 


