A Standard-Model Security Analysis of TLS-DHE

Tibor Jager¹, Florian Kohlar², Sven Schäge³, and Jörg Schwenk²

¹ Karlsruhe Institute of Technology
 ² Horst Görtz Institute for IT Security, Bochum
 ³ University College London

CRYPTO 2012

Transport Layer Security (TLS)

Goal: provide **confidential** and **authenticated** communication channel

TLS and SSL

- TLS 1.0 and 1.1 still widely used
- In this talk: TLS \approx TLS 1.0 \approx TLS 1.1 \approx TLS 1.2

TLS Sessions: Handshake + Record Layer

Cipher Suites

- Standardized **selection of algorithms** for key exchange, signature, encryption, hashing
 - TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- 3 groups of Cipher Suites:
 - Ephemeral Diffie-Hellman (TLS-DHE)
 - Static Diffie-Hellman (TLS-DH)
 - RSA encryption (TLS-RSA)
- Handshake protocol is (slightly) different for each group

The Cryptographic Core of TLS-DHE Handshake

1. Cipher suite agreement:

r_c, supported Cipher Suites

r_s, selected Cipher Suite

S has signature key (pk_{s.} sk_s)

2. Key exchange:

$$c \leftarrow Z_{q} \\ pms = g^{cs} \\ ms = PRF(pms; L_{1}, r_{C}, r_{s}) \\ k = PRF(ms; L_{2}, r_{C}, r_{s}) \\ k = PRF(ms; L_{2}, r_{C}, r_{s}) \\ ms = g^{cs} \\ ms = PRF(ms; L_{2}, r_{C}, r_{s}) \\ k = PRF(ms; L_{2}, r_{C}, r_{s}) \\ k = PRF(ms; L_{2}, r_{C}, r_{s}) \\ s \leftarrow Z_{q} \\ pms = g^{cs} \\ ms = PRF(pms; L_{1}, r_{C}, r_{s}) \\ k = PRF(ms; L_{2}, r_{C}, r_{s}) \\ k = PRF(ms;$$

"Accept" key k with partner S

 $fin_C = PRF(ms; L_4, prev. data)$

3. FINISHED messages: Enc(k;const_s, fin_s)

 $fin_S = PRF(ms; L_3, prev. data)$

Enc(k;const_c, fin_c)

"Accept" key k with partner C

Is this secure?

Secure Authenticated Key Exchange

- Secure AKE guarantees:
 - Authentication of communication partners
 - Good cryptographic keys
 - "Real" key should be **indistinguishable** from random value
- Several security models formalizing AKE security
 - [BR'93, BJM'99, CK'01, LLM`07, ...]
 - We use an enhanced version of Bellare-Rogaway
 - Adopted to public-key setting
 - Adversary can forward, alter, drop, replay, ... any message
 - Adaptive corruptions, perfect forward secrecy, security against key-compromise impersonation

The TLS Handshake is not a Provably Secure AKE Protocol

- Enc(k;const_s,fin_s) allows to distinguish real key k from random
 - Applies to TLS-DHE, TLS-DHS, and TLS-RSA

Unsatisfying Situation

- TLS is the most important security protocol in practice
- TLS Handshake is insecure in any AKE security model based on key-indistinguishability
- Two approaches to resolve this issue:
 - Consider "truncated" TLS Handshake [MSW'10], without encryption of FINISHED messages
 - 2. Develop a new security model

1st Approach: "Truncated TLS"

Theorem:

Truncated **TLS-DHE** Handshake is a secure AKE protocol, if

- the PRF is a secure pseudo-random function,
- the digital signature scheme is **EUF-CMA secure**,
- the DDH assumption holds, and
- the PRF-ODH assumption holds

Comparison to Previous Work

Truncated TLS: Morissey, Smart, Warinschi '10

Morrissey, Smart, Warinschi '10	Our work
Bellare-Rogaway Model	Bellare-Rogaway Model
TLS_DHE, TLS_DH, TLS_RSA ¹	TLS_DHE
Random Oracle Model	Standard Model ²

Both results do **not** consider the **real TLS Handshake**...!

¹ Assumes different RSA encryption scheme ² Requires PRF-ODH assumption

2nd Approach: New Security Model

- Secure AKE provides indistinguishable keys
 - Key can be used in any further application
 - Too strong for TLS Handshake
 - Stronger than necessary: TLS uses keys for Record Layer
- Can we describe a new security model which is
 - strong enough to provide security, but
 - weak enough to be achievable by TLS?

Authenticated Confidential Channel Establishment (ACCE)

- Simple extension of the AKE model:
 - Explicit authentication of communication partners
 - Good cryptographic keys
 Authenticated and confidential channel
- ACCE considers Handshake + Record Layer
 - Requires that
 - Encryptions are indistinguishable
 - Ciphertexts are authentic

TLS-DHE is a Secure ACCE Protocol

Theorem:

TLS-DHE is a secure ACCE protocol, if

- the PRF is a secure pseudo-random function,
- the digital signature scheme is EUF-CMA secure,
- the **DDH assumption** holds in the Diffie-Hellman group,
- the PRF-ODH assumption holds, and
- the Record Layer cipher is secure (sLHAE)

Stateful Length-Hiding Authenticated Encryption [PRS'11]:

- Security notion for symmetric ciphers
- Captures exactly what is expected from TLS Record Layer
- Achieved by CBC-based ciphersuites in TLS 1.1 and 1.2

The PRF-ODH Assumption

Let G = <g> be a group with order p,
 let PRF : G x M → R be a function

Adversary A $m \in M$ Challenger C $U := g^u, V := g^v$ where $u, v \leftarrow Z_p$ $V \in G$ V $V \in G$ $V \in G$ V V

- PRF-ODH assumption: no efficient attacker can distinguish PRF(g^{uv},m) from random
 - Variant of Oracle Diffie-Hellman assumption [ABR'01]

Is PRF-ODH *really* necessary?

- Not if
 - no corruptions of long-term secrets are allowed, or
 - small changes are made to TLS-DHE Handshake
 - E.g. making it more similar to Σ_0 [CK'02]
- Impossible to avoid, if
 - security model with corruptions is considered, and
 - reduction uses attacker and PRF as black-box

Summary and Open Problems

- AKE-security proof for Truncated TLS-DHE Handshake
- New ACCE security model
 - Alternative approach: "Relaxed yet composable security notions for key exchange" [BFSWW`12]
- ACCE-security proof for TLS-DHE with suitable Record Layer
- Many open problems
 - TLS is much more complex we considered only the cryptographic core of TLS-DHE
 - Similar analysis of TLS-DH and TLS-RSA possible?