
Succinct Arguments from MIPs
and their Efficiency Benefits

Alessandro Chiesa Nir Bitansky

How quickly can we verify the
result of long computations?

𝑤

proof 𝑤 checkable in 𝑇 time

𝑃 𝑉

∃ 𝑤 s.t. 𝑀 𝑥,𝑤 = 1 in ≤ 𝑇 steps?

𝐿 = Lang 𝑀 ∈ NP ⇒ 𝑇௅ = poly௅ |𝑥|

Succinct Arguments for NP
A (computationally-sound) proof for NP where
verifier’s time complexity is independent of the time
complexity 𝑇௅ required to check membership in the language.

poly𝓤(𝑘 + 𝑇௅) poly𝓤(𝑘 + |𝑥|) ⋮ 𝑃 𝑉

[Kil92]
[Mic94]
[BG02]

Succinct arguments enable us to delegate ``NP’’

∃ 𝑤 s.t. 𝑀 𝑥,𝑤 = 1 in ≤ 𝑇௅ steps?

Soundness against unbounded provers
is unlikely

[BHZ87, GH98, GVW02]
⇒ only computational soundness

Exist under standard assumptions (CRHs)

Non-Interactive Succinct Arguments (Of Knowledge)
≡ SNARKs

poly𝓤(𝑘 + 𝑇௅) poly𝓤(𝑘 + |𝑥|) 𝑃 𝑉

𝐺

TIME(𝐺) = poly𝓤(𝑘) fully-succinct

TIME(𝐺) = poly𝓤(𝑘 + 𝑇௅) preprocessing

𝜎 verification
key

𝜋
(𝑀, 𝑥, 𝑇)

𝜏
reference

string

𝜏 must be secret = designated-verifier
𝜏 can be published = publicly-verifiable

𝑃 𝑉

𝐺 𝜎 verification
key

𝜋
(𝑀, 𝑥, 𝑇)

𝜏
reference

string

[Gentry Wichs 11] can’t prove secure via black-box reduction to
falsifiable assumptions (for ``hard enough NP language”)
[BCCT11]
[DHF11]
[GLR11]

[Groth10]
[Lipmaa11]
[GGPR12]

KNOWN:

fully-succinct BUT designated-verifier
from extractable collision-resistant hashes

publicly-verifiable BUT preprocessing
from knowledge of exponent assumptions

poly𝓤(𝑘 + 𝑇௅) poly𝓤(𝑘 + |𝑥|)

Non-Interactive Succinct Arguments (Of Knowledge)
≡ SNARKs

ADDITIONAL GOAL:

Verifier runs fast, gets strong guarantee.
BUT…

What about the prover?
The verifier might be paying

the prover for his work!

Where do we stand?

minimize prover’s complexity!

2 Approaches for Succinct Arguments for NP

PCP-based
4-msg from CRH [Kil92,Mic94,BG02]

𝑉 𝑃

hash
commit PCP

PCP q’s
PCP a’s

w/ state-of-the-art PCPs [BCGT12]
𝑶෩(𝑻) time BUT need 𝛀 𝑻 space!

bilinear maps + KEA
[Groth10,Lipmaa11,GGPR12]

𝑇

𝜎 𝜏

𝑉 𝑃

𝐺

𝑦, 𝜋

𝛀 𝑻 space!

𝛀 𝑻
preprocessing!

2-msg from PIR+ECRH [BCCT11,DHF11,GLR11]

NOT EFFICIENT ENOUGH!

preprocessing
time

prover
time

prover
space

verifier
time

[Kil92] … poly(𝑘) 𝑇 ⋅ poly(𝑘) 𝑻 ⋅ poly(𝑘) poly(𝑘)
[GGPR12] 𝑻 ⋅ poly(𝑘) 𝑇 ⋅ poly(𝑘) 𝑻 ⋅ poly(𝑘) poly(𝑘)
COMPLEXITY
PRESERVING 𝐩𝐨𝐥𝐲(𝒌) 𝑻 ⋅ 𝐩𝐨𝐥𝐲(𝒌) 𝑺 ⋅ 𝐩𝐨𝐥𝐲(𝒌) 𝐩𝐨𝐥𝐲(𝒌)

For a T-time S-space RAM computation:

Are there COMPLEXITY-PRESERVING
• succinct arguments from standard assumptions?
• SNARKs from reasonable assumptions?

QUESTIONS

Yes and Yes

RESULTS

MIP + FHE ⇒ complexity-preserving
 4-msg succinct argument

MIP + FHE ⇒ complexity-preserving SNARK
w/ knowledge

[not public coin]

[designated verifier]

Theorem 1

Theorem 2

new tool:
succinct function commitment

new (non-standard) assumption:
FHE with extractable homomorphism

Why do MIPs pop up here?

The Role of MIPs

What is the problem with PCP+CRH?
Let 𝑓(𝑖) compute 𝒊-th bit of PCP.

𝑓 1 𝑓 2 𝑓 3 ⋯

Committing to PCP requires
|PCP|=Ω(𝑇) evaluations of 𝑓.

naively: Ω 𝑇ଶ time
[BCGT12]: 𝑂෨(𝑇) time via FFT methods BUT Ω 𝑇 space

BUT: verifier asks only q ≝ polylog(𝑇) evaluations!

Can we save on evaluations when committing?

How to compute all these evaluations?

If so, we may hope for better efficiency…

we treat 𝒇 as a string because
Merkle trees are a succinct STRING commitment

ALTERNATIVE: treat 𝒇 as a function
More concretely:

just as good: not-necessarily-identical

≡ MIP

CHALLENGES
1. sufficiently-efficient MIP construction?
2. how to implement MIP model (w/ ONE prover)?

STEP 1: give a time-and-space-efficient construction in a
model where the verifier sends one query to each of q
identical functions

STEP 2: implement model in a complexity-preserving way

identical

Essentially-Optimal MIPs

Thm: ∃ a 1-round MIP where to check that a
𝑇-time 𝑆-space RAM 𝑀 accepts (𝑥, 𝑤) for some 𝑤,
(i) the MIP verifier runs in time 𝑂෨ 𝑥
(ii) each MIP prover runs in time 𝑂෨ 𝑇 & space 𝑂෨ 𝑆

NOTE: PCPs with the above efficiency not known!

Tackled first challenge.

Succinct Function Commitment (SFC)

𝑞ଵ,… , 𝑞ℓ𝓁

⋮ sender receiver

⋮ sender receiver

commit

decommit 𝑓ଵ(𝑞ଵ), … , 𝑓ℓ𝓁(𝑎ℓ𝓁)

ℓ𝓁 ⋅ 𝑻 ⋅ 𝐩𝐨𝐥𝐲(𝒌) ℓ𝓁 ⋅ 𝐥𝐨𝐠 |𝑨| ⋅ 𝐩𝐨𝐥𝐲(𝒌) time:
ℓ𝓁 ⋅ 𝑺 ⋅ 𝐩𝐨𝐥𝐲(𝒌) ℓ𝓁 ⋅ 𝐥𝐨𝐠 |𝑨| ⋅ 𝐩𝐨𝐥𝐲(𝒌) space:

given 𝑇-time 𝑆-space functions (𝑓ଵ, … , 𝑓ℓ𝓁): 𝐴 → 𝐴,

[Ishai, Kushilevitz, Ostrovsky, CCC ‘07]
linear hom. enc. ⇒ SFC for linear functions

Succinct Function Commitment (SFC)

Succinct Function Commitment (SFC)

IDEA:

STEP 1: start from the delegation scheme of [CKV10]…

prover verifier
𝐸 0 , 𝐸 𝑥

𝐸෠ 𝑓(0) , 𝐸෠ 𝑓(𝑥)

𝐸(0), 𝐸෠(𝑓 0)

𝑥

𝑓(𝑥)

preprocessing

online

Thm: FHE ⇒ 4-msg SFC for ANY polytime function

in random order

Succinct Function Commitment (SFC)

IDEA:

STEP 1: … and “delegate” its preprocessing phase

𝐸 0 , 𝐸 𝑥

𝐸෠ 𝑓(0) , 𝐸෠ 𝑓(𝑥)

𝑥

𝑓(𝑥)

preprocessing

online sender receiver

𝐸 0

𝐸෠ 𝑓 0 sender receiver

Thm: FHE ⇒ 4-msg SFC for ANY polytime function

𝐸(0), 𝐸෠(𝑓 0)

Succinct Function Commitment (SFC)

IDEA:

STEP 1: … and “delegate” its preprocessing phase

𝐸 0 , 𝐸 𝑥

𝐸෠ 𝑓(0) , 𝐸෠ 𝑓(𝑥)

𝑥

𝑓(𝑥)

preprocessing

online sender receiver

𝐸 𝐸(0)

𝐸෠ 𝐸෠(𝑓 0) sender receiver preprocessing

online
succinct

Thm: FHE ⇒ 4-msg SFC for ANY polytime function

𝐸 𝑥

𝐸෠ 𝑓(𝑥)

Succinct Function Commitment (SFC)

Tackled second challenge.
STEP 2: amplify with parallel repetition [Hai09,CL10]

IDEA:

STEP 1: … and “delegate” its preprocessing phase

𝐸 0 , 𝐸 𝑥

𝐸෠ 𝑓(0) , 𝐸෠ 𝑓(𝑥)

0, 𝑓(0)

𝑥

𝑓(𝑥)

preprocessing

online sender receiver

𝐸 𝐸(0)

𝐸෠ 𝐸෠(𝑓 0) sender receiver preprocessing

online
fully succinct

Thm: FHE ⇒ 4-msg SFC for ANY polytime function

𝐸 𝑥

𝐸෠ 𝑓(𝑥)

The Role of MIPs

[Dwork et al., ’04]: MIP + PIR unlikely to work

(FHE* ≈ FHE where homomorphic ops. are extractable)

What about SNARKs?

Thm: MIP + SFC ⇒ complexity-preserving
 4-msg succinct arguments

Thm: MIP + FHE* ⇒ complexity-preserving SNARKs

In fact, can ``squash’’ any public-coin interactive
argument (and not just proofs as in [KR09])

[Bitansky, Canetti, Chiesa, Tromer, EPRINT 12]

any SNARK ⇒ complexity-preserving SNARK
 & proof-carrying data

Follow-Up

Want More?

even if has expensive
preprocessing!

See paper for details & interesting open problems!

THANKS!
http://eprint.iacr.org/2012/461

