Succinct Arguments from MIPs
and their Efficiency Benefits

Nir Bitansky Alessandro Chiesa

How quickly can we verify the
result of long computations?

Jws.t. M(x,w) =1in < T steps?

P >V

proof w checkable in T time

L = Lang(M) € NP = T, = poly, (]x|)

Succinct Arguments for NP

A (computationally-sound) proof for NP where
verifier’s time complexity is independent of the time
complexity T; required to check membership in the language.

Jws.t. M(x,w) = 1in < T, steps?

polyy(k+T,) | P | T V | polyy(k + |x|)

~
7

[Kil92]

[Mic94] Exist under standard assumptions (CRHSs)
[BGO2]

Succinct arguments enable us to delegate "NP”’

Non-Interactive Succinct Arguments (Of Knowledge)

reference
string

polyy(k +T})

= SNARKS
J G . verification
/ \ key
M,x, T
p 2Dy polyy (k + 1D

@® 7 must be secret = designated-verifier
T can be published = publicly-verifiable

® TIME(G) = polyy (k)

TIME(G) = polyy(k + T;)

fully-succinct

preprocessing

Non-Interactive Succinct Arguments (Of Knowledge)

= SNARKSs
reference G verification
. o T
string / \ key
M,x, T
polyy(k+T;)| P (-)> V | polyy(k + |x])
KNOWN:

[Gentry Wichs 11] can’t prove secure via black-box reduction to
falsifiable assumptions (for ““hard enough NP language”)

[BCCT11] fully-succinct BUT designated-verifier

[DHF11] A
(GLR11] from extractable collision-resistant hashes

[Groth10] 5 blicly-verifiable BUT preprocessing
[Lipmaall]

[GGPR12] from knowledge of exponent assumptions

Verifier runs fast, gets strong guarantee.

BUT...
What about the prover?

The verifier might be paying
the prover for his work!

ADDITIONAL GOAL:

minimize prover’s complexity!

Where do we stand?

2 Approaches for Succinct Arguments for NP

PCP-based bilinear maps + KEA

4-msg from CRH [Kil92,Mic94,BG02] [Groth10,Lipmaall,GGPR12]
2-msg from PIR+ECRH [BCCT11,DHF11,GLR11]: T

'

hash Q(T))
< preprocessing!

commit PCP>
PCPqgs |V

;
1

< [/ [

p I

>

NOT EFFICIENT ENOUGH!

~or a T-time S-space RAM computation:

preprocessing prover prover verifier
time time space time
[Kil92] ... poly(k) T - poly(k) | T - poly(k) | poly(k)
[GGPR12] T -poly(k) | T-poly(k) | T - poly(k) | poly(k)
QUESTIONS

Are there COMPLEXITY-PRESERVING
e succinct arguments from standard assumptions?
 SNARKs from reasonable assumptions?

Yes and Yes

RESULTS

Theorem 1
MIP + FHE = complexity-preserving

[4-msg succinct argument
succinct function commitment [not public coin]
Theorem 2
MIP + FHE = complexity-preserving SNARK
w/ knowledge [designated verifier]

(ﬁon—standard) assumption:]
FHE with extractable homomorphism

Why do MIPs pop up here?

The Role of MIPs

What is the problem with PCP+CRH?

/J
Let f (i) compute i-th bit of PCP.
Committing to PCP requires //\‘;ﬁ ";\

|PCP|=Q(T) evaluations of f. FDf@RFB)

How to compute all these evaluations?

naively: Q(T?) time
[BCGT12]: O(T) time via FFT methods BUT Q(T) space

def

BUT: verifier asks only q £ polylog(T) evaluations!

Can we save on evaluations when committing?

If so, we may hope for better efficiency...

we treat f as a string because
Merkle trees are a succinct STRING commitment

ALTERNATIVE: treat f as a function

More concretely:

STEP 1: give a time-and-space-efficient construction in a
model where the verifier sends one query to each of q
identicatl functions = MIP

STEP 2: implemant model in a complexity-preserving way

just as good: not-necessarily-identical

CHALLENGES
1. sufficiently-efficient MIP construction?
2. how to implement MIP model (w/ ONE prover)?

Essentially-Optimal MIPs

Thm: 3 a 1-round MIP where to check that a
T-time S-space RAM M accepts (x, w) for some w,
(i) the MIP verifier runs in time O (|x|)

(ii) each MIP prover runs in time O(T) & space O(S)

NOTE: PCPs with the above efficiency not known!

Tackled first challenge. /

Succinct Function Commitment (SFC)

given T-time S-space functions (fy, ..., fz): A = A,

4—
commit sender : receiver
B
d1, -, qp
< .
decommit sender : | receiver
I f1(q1) v, fe(ayp) .

time: ¢ -T-poly(k) £ -log|A|- poly(k)
space: {-S-poly(k) ¢ -log|A]|-poly(k)

Succinct Function Commitment (SFC)

® |[Ishai, Kushilevitz, Ostrovsky, CCC ‘07]
linear hom. enc. = SFC for linear functions

Succinct Function Commitment (SFC)

Thm: FHE = 4-msg SFC for ANY polytime function

IDEA:

STEP 1: start from the delegation scheme of [CKV10]...

[in random@

prover

<

E(0), E(x)

E(0), E(f(0))

preprocessing

X

B0, E(fxy), | Verifier

—)
online

f(x)

Succinct Function Commitment (SFC)

Thm: FHE = 4-msg SFC for ANY polytime function

IDEA:

STEP 1: ... and “delegate” its preprocessing phase

< E(O) [|
sender E(£(0)) E(0),E(f(0) preprocessing
> I
E(0),E(x) X
sender <E"(f(0)) E(f(x)) |receiver | f(x) online
’ > —>

Succinct Function Commitment (SFC)

Thm: FHE = 4-msg SFC for ANY polytime function

IDEA:

STEP 1: ... and “delegate” its preprocessing phase

sender

E(E(0))

E(E(f(0))

sender

<

receiver

E(0),E(x) "™

EGFOD B,

receiver

f(x)

E(f(x))

Preprocessng
succinct
online

Succinct Function Commitment (SFC)

Thm: FHE = 4-msg SFC for ANY polytime function

IDEA:
STEP 1: ... and “delegate” its preprocessing phase
E(E(0))
sender| g(g receiver :
E(EGO)) preprocessing
E(0) E(x)E(x) X fully succinct
) | . N enline
sender| £(£(0)), E(f(x)) receiver f(x)
E(f (x))

STEP 2: amplify with parallel repetition [Hai09,CL10]
Tackled second challenge. J

The Role of MIPs

Thm: MIP + SFC = complexity-preserving
4-msg succinct arguments

What about SNARKSs?
[Dwork et al., '04]: MIP + PIR unlikely to work

Thm: MIP + FHE* = complexity-preserving SNARKs

(FHE* zy\ihomomorphic ops. are extractable)

- N
In fact, can squash’ any public-coin interactive

argument (and not just proofs as in [KR09])
N J

Follow-Up

[Bitansky, Canetti, Chiesa, Tromer, EPRINT 12]

any SNARK = complexity-preserving SNARK
& proof-carrying data

even if has expensive
preprocessing!

Want More?

See paper for details & interesting open problems!

THANKS!
http://eprint.iacr.org/2012/461

