Collusion-Preserving
Computation

Jo€l Alwen (ETH Ziirich)
Jonathan Katz (U. Maryland)
Ueli Maurer (ETH Ziirich)
Vassilis Zikas (U. Maryland)

Overview

Motivation & Goals
Definition

Fall-back Security
Synchronization Pollution

Implications for Game Theory

Future Directions

Goals (1)

Goals (1)

* Primary Goal: A realization notion bounding the
capabilities of deviating coalitions even in the
presence of arbitrary composition.

Goals (1)

* Primary Goal: A realization notion bounding the
capabilities of deviating coalitions even in the
presence of arbitrary composition.

« “Rrealizes F" = R can be used in place of F

Goals (1)

* Primary Goal: A realization notion bounding the
capabilities of deviating coalitions even in the
presence of arbitrary composition.

« “Rrealizes F" = R can be used in place of F
« “capabilities of deviating coalitions” = such

that even collaborating “dishonest” players
can do no more with R then they could with F

Goals (1)

* Primary Goal: A realization notion bounding the

capabilities of deviating coalitions even in the
presence of arbitrary composition.

“R realizes F” = R can be used in place of F
“capabilities of deviating coalitions” = such

that even collaborating “dishonest” players
can do no more with R then they could with F

“arbitrary composition” = regardless of any

concurrent activities in which they may be
iInvolved.

Example Use Cases

Example Use Cases

 Composable Game Theory.

 Extreme case of deviating coalitions.

Example Use Cases

 Composable Game Theory.

 Extreme case of deviating coalitions.

* Collusion-Free (CF) MPC robust in the
presence of side-channels.

* CF (provably) not concurrently composable

Example Use Cases

 Composable Game Theory.

 Extreme case of deviating coalitions.

* Collusion-Free (CF) MPC robust in the
presence of side-channels.

* CF (provably) not concurrently composable

* Other (intuitive) examples requiring bounds on
collaborating dishonest players.

* Incoercability: Coercer/Informant & Coercee.
* Auctions: Bid fixing by corrupt bidders.
 Bounded Isolation: Useful for say, poker or bridge

Goals (2)

Goals (2)

Generic definition independent of
communication resource R.

- Better for comparing different
constructions.

- Allows investigating minimal properties

for resource R used to realize a given F.

Goals (2)

* (Generic definition independent of
communication resource R.

- Better for comparing different
constructions.

- Allows investigating minimal properties

for resource R used to realize a given F.

* Non-triviality: strong fall-back security even
If R “miss-behaves”.

Goals (2)

* (Generic definition independent of
communication resource R.

- Better for comparing different
constructions.

- Allows investigating minimal properties

for resource R used to realize a given F.

* Non-triviality: strong fall-back security even
If R “miss-behaves”.

e (Concrete communication resource R &
construction for many F.

Goals (2)

Generic definition independent of
communication resource R.

- Better for comparing different
constructions.

- Allows investigating minimal properties
for resource R used to realize a given F.

Non-triviality: strong fall-back security even
If R “miss-behaves”.

Concrete communication resource R &
construction for many F.

Explore implications for composable Game

Related Work

Related Work
. SFE/MPC [GMW, BGW,...]

* First generic realization notions.

- Not generally composable

- Gives deviating coalitions arbitrary (internal)
capabilities (monolithic adversary)

Related Work
. SFE/MPC [GMW, BGW,...]

* First generic realization notions.

- Not generally composable

- Gives deviating coalitions arbitrary (internal)
capabilities (monolithic adversary)

 Arbitrary composition [Can, PW, CLOS, CDPW,...]
e Exa: UC, GUC, JUC, etc.

- But monolithic adversary

Related Work
. SFE/MPC [GMW, BGW,...]

* First generic realization notions.

- Not generally composable

- Gives deviating coalitions arbitrary (internal)
capabilities (monolithic adversary)

 Arbitrary composition [Can, PW, CLOS, CDPW,...]

« Exa: UC, GUC, JUC, etc.
- But monolithic adversary

e Collusion-Free (CF) computation [LMPS, ILM, ASV,
AKLPSV]

 Bounds deviating coalitions (via split adversaries)

CF 1s not Composable

CF 1s not Composable

e < F = 2-party null functionality (does nothing)

* Define <R~ and protocol &= (nl ,n2)

CF 1s not Composable

e < F = 2-party null functionality (does nothing)

* Define <R~ and protocol &= (nl ,n2)

R . me (0,1} 2
r {O,l}k(unif. rand;)

Ifr'=r=a:=m

Else = a:=1

CF 1s not Composable

e < F = 2-party null functionality (does nothing)

* Define <R~ and protocol &= (nl ,n2)

R o me (0,1} 2
r {O,l}k(unif. rand‘)

Ifr'=r=a:=m
Else = a:=1

* ris uniform random and F allows no communication between
simulators. = Can always simulate for n1 with a = L.

= R CF-realizes F via .

CF 1s not Composable

F = 2-party null functionality (does nothing)

Define - R and protocol n = (nl ,n2)

R y m e {0,1}2k T2
r {O,l}k(unif. rand‘)

Ifr'=r=a:=m

Else = a:=1

ris uniform random and F allows no communication between
simulators. = Can always simulate for n1 with a = L.

= R CF-realizes F via .

Now compose with C ; a k-bit channel from P2—P1. Use it transmit r.
So P2 can learn m from R . But using F & C the simulators can
communicate at most k. l.e. 7 is no longer simulatable!

Composable CF — Collusion-Preservation

Composable CF — Collusion-Preservation

* Goal: Add composability to CF.

Composable CF — Collusion-Preservation

* Goal: Add composability to CF.

* |dea: Add an environment (as in UC-style
realization notions) to CF — CP.

Composable CF — Collusion-Preservation

* Goal: Add composability to CF.

* |dea: Add an environment (as in UC-style
realization notions) to CF — CP.

* Immediate results:

e Dummy (adversary) lemma and (G)UC
composition theorems hold essentially
unchanged.

Composable CF — Collusion-Preservation

* Goal: Add composability to CF.

* |dea: Add an environment (as in UC-style
realization notions) to CF — CP.

* Immediate results:

Dummy (adversary) lemma and (G)UC
composition theorems hold essentially
unchanged.

CP strictly generalizes (G)UC realization
notions.

Construction (1)

Construction (1)

* CP Construction for F using resource R:
 Trivial Idea: Resource R = Functionality F.

Construction (1)

* CP Construction for F using resource R:
 Trivial Idea: Resource R = Functionality F.
* |ssues:
 RdependsonF

- We show that to some extent such a
dependency is unavoidable.

- However at least R must only be
“programmable” but not fully “non-uniform”.

Construction (1)

* CP Construction for F using resource R:
 Trivial Idea: Resource R = Functionality F.
* |ssues:
 RdependsonF

- We show that to some extent such a
dependency is unavoidable.

- However at least R must only be
“programmable” but not fully “non-uniform”.

 |f R mis-behaves all bets are off.

- Usually we don't care about this case. But trust
IS a rare commodity.

Fallback Security

Fallback Security

* Def. “Fallback Security” = Security attained
when protocol is run using an arbitrary
communication resource.

Fallback Security

* Def. “Fallback Security” = Security attained

when protocol is run using an arbitrary
communication resource.

 Example: Protocol &1 CP-realizes R from F with
GUC-Fallback Security.

e |fmis run with R then F is CP-realized.
 Ifmis run with any R* then F is GUC-realized.

Fallback Security

* Def. “Fallback Security” = Security attained

when protocol is run using an arbitrary
communication resource.

 Example: Protocol 1 CP-realizes R from F with
GUC-Fallback Security.

e |fmis run with R then F is CP-realized.
 Ifmis run with any R* then F is GUC-realized.

* Now trivial construction no longer works
because it achieves no fallback security.

Construction (2)

Construction (2)

* Recall CF construction of Mediated Model of [ASV,
AKLPSV]. Idea: “assisted SFE in the mediator's head”

For functionality F, let protocol T = GMW(F).

“Mediator” resource M runs 7t on behalf of players “in
her head”.

Player Pi's internal state in shared between Pi and
M.

Next protocol msg generated and Pi's state updated
via 2-party SFE between Pi and M.

Construction (2)

* Recall CF construction of Mediated Model of [ASV,
AKLPSV]. Idea: “assisted SFE in the mediator's head”

For functionality F, let protocol T = GMW(F).

“Mediator” resource M runs 7t on behalf of players “in
her head”.

Player Pi's internal state in shared between Pi and
M.

Next protocol msg generated and Pi's state updated
via 2-party SFE between Pi and M.

 CP Construction Idea:
e Use = GUC(F) with setup S.

- GUC allows us to reuse S across protocols.

Synchronization Pollution (1)

Synchronization Pollution (1)

* Did we get CP with GUC fall-back?
 No! “Synchronization Pollution”

Synchronization Pollution (1)

* Did we get CP with GUC fall-back?
 No! “Synchronization Pollution”

* Recall Intuitive Goal: Ensure corrupt colluding
parties get no more from R then from F.

 Technically: Can simulate with split simulators

Synchronization Pollution (1)

* Did we get CP with GUC fall-back?
 No! “Synchronization Pollution”

* Recall Intuitive Goal: Ensure corrupt colluding
parties get no more from R then from F.

 Technically: Can simulate with split simulators

e Solutions:

1.Remove subliminal communication channels
(“steganography freeness”) [Sim84]

2.Remove “randomness pollution” for CF [LMSO05,
ILMOS5,...]

Synchronization Pollution (2)

Synchronization Pollution (2)

* This work: Identify and mitigate new security concern.

Synchronization Pollution (2)

* This work: Identify and mitigate new security concern.

* Def. “Synchronization Pollution” = Adversaries obtain more
synchronization of events using R then using F.

Synchronization Pollution (2)

* This work: Identify and mitigate new security concern.

* Def. “Synchronization Pollution” = Adversaries obtain more
synchronization of events using R then using F.

 Intuitive problem: more observable events from R than
from F = Adversaries more coordinated.

Synchronization Pollution (2)

* This work: Identify and mitigate new security concern.

* Def. “Synchronization Pollution” = Adversaries obtain more
synchronization of events using R then using F.

 Intuitive problem: more observable events from R than
from F = Adversaries more coordinated.

Technical Problem: F doesn't provide simulators
enough synchronization for them to coordinate the
events in their on-line simulations.

- Not an issue for CF because distinguisher (unlike
environment) is off-line.

Mitigating Synchronization Pollution

Mitigating Synchronization Pollution

* |dea: Resource R runs p = GUC(F) “in the head”. Minimize
number of observable events generated by assisting R.

Mitigating Synchronization Pollution

* |dea: Resource R runs p = GUC(F) “in the head”. Minimize
number of observable events generated by assisting R.

* Problem: p is multi-round = Has many public ordered events.

* Q: What is minimal synchronization obtained from 2-party SFEs
used to “assist” R in running p?

Mitigating Synchronization Pollution

|dea: Resource R runs p = GUC(F) “in the head”. Minimize
number of observable events generated by assisting R.

Problem: p is multi-round = Has many public ordered events.

Q: What is minimal synchronization obtained from 2-party SFEs
used to “assist” R in running p?
A: Surprisingly, only output-delivery synchronization.

|deal World: F delivers output only after players activated
enough to “fuel” an execution of p.

Technically: 2-party SFEs now hide all events in p.

e.g. Round number? Message received? From who?
Message sent? To who? State changed? (!!!)

[AKLPSV]: hides only internal state of Pj and message
contents for p.

Result

Result

* Show the necessity of several properties of our real-
world resource R.

 Probabilistic, Isolating, Programmable.

Result

* Show the necessity of several properties of our real-
world resource R.

 Probabilistic, Isolating, Programmable.

= Rule out using most standard resources for realizing

practically any interesting F.

 Broadcast channel, insecure/secure/perfect channels.

Result

* Show the necessity of several properties of our real-
world resource R.

 Probabilistic, Isolating, Programmable.
= Rule out using most standard resources for realizing

practically any interesting F.

 Broadcast channel, insecure/secure/perfect channels.

= Minimality of Mediator resource.

Result

* Show the necessity of several properties of our real-
world resource R.

 Probabilistic, Isolating, Programmable.

= Rule out using most standard resources for realizing

practically any interesting F.

 Broadcast channel, insecure/secure/perfect channels.

= Minimality of Mediator resource.

 Theorem: For a large class of F we give a resource
and protocol that CP-realize F with GUC-fallback.

Applications to GT

Applications to GT

1)Define a model of rational, computational and concurrent
mediated game play

Goal: Bring GT models closer to reality (Crypto :)).
Principle: Local actions. Global intentions and consequences

Applications to GT

1)Define a model of rational, computational and concurrent
mediated game play
Goal: Bring GT models closer to reality (Crypto :)).
Principle: Local actions. Global intentions and consequences

2)Show how to replace ideal mechanism with cryptographic
protocol games on a network s.t.

Game theorists can design and analyze ideal and fully
trusted mechanisms

but games can be played by computers over (special)
networks s.t.

less trust placed in network than mechanism achieving
essentially the same game.

Future Directions

Future Directions
 Further constructions.

Weaker fallback — realize more funcs. more efficiently.

When can R be stateless?

Can output synchronization be removed from F?
Efficient constructions for auctions?

Future Directions

 Further constructions.

Weaker fallback — realize more funcs. more efficiently.
When can R be stateless?
Can output synchronization be removed from F?

Efficient constructions for auctions?

* New security notions leveraging split-simulators.

Example: Capturing enforced properties like incoercability.

Currently: if a single process (ITl) on a machine is corrupted
entire party is considered corrupt. Can we do better? What do we
get from Sandboxes, VMs, chroot jails, restricted UIDs? E.g LUC
[CV12]

Future Directions
 Further constructions.

Weaker fallback — realize more funcs. more efficiently.
When can R be stateless?
Can output synchronization be removed from F?

Efficient constructions for auctions?

* New security notions leveraging split-simulators.

. Example: Capturing enforced properties like incoercability.

. Currently: if a single process (ITl) on a machine is corrupted
entire party is considered corrupt. Can we do better? What do we
get from Sandboxes, VMs, chroot jails, restricted UIDs? E.g LUC
[CV12]

* Wanted: Local stability notion for Concurrent GT.

Future Directions
Further constructions.

Weaker fallback — realize more funcs. more efficiently.
When can R be stateless?

Can output synchronization be removed from F?
Efficient constructions for auctions?

New security notions leveraging split-simulators.

. Example: Capturing enforced properties like incoercability.

. Currently: if a single process (ITl) on a machine is corrupted
entire party is considered corrupt. Can we do better? What do we
get from Sandboxes, VMs, chroot jails, restricted UIDs? E.g LUC
[CV12]

Wanted: Local stability notion for Concurrent GT.

Relations to Abstract Cryptography framework [MR11].

Thank You!

