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Outline

1. Decorrelation Theory
• The Luby-Rackoff Model
• Advantage of a non-adaptive adversary A
• Distribution matrix of a block cipher and its link with the

advantage of the adversary A
2. Solving two open problems

• Necessary conditions for the security of block ciphers
• Effects of the input distribution on the advantage of the

adversary A
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Decorrelation Theory

• Proposed by Vaudenay as a tool for proving resistance of
block ciphers against a wide range of statistical attacks:

• Differential attacks, linear attacks, truncated differential
attacks, etc.

• Even provides the proof of security against not-yet discovered
attacks

• Proves the security of several block ciphers such as:
• DFC, NUT (n-Universal Transformation) families of block

ciphers, the block cipher C, and KFC
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The Luby-Rackoff Model

We consider a d-limited adversary A in the Luby-Rackoff Model

A Ω

1 or 0

C or C∗
(x1, . . . , xd)

(Ω(x1), . . . , Ω(xd))

AdvA(C, C∗) =
�� Pr[A(C) = 1]− Pr[A(C∗) = 1]

��

When the d inputs are chosen at once, A is non-adaptive
— If advantage is negligible for all adversaries A, then the cipher
C is considered as secure
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Computing Advantage of A Using Decorrelation Theory

• Computing advantage is not an easy task in general

• Decorrelation Theory provides tools for computing the best
advantage of A:

BestAdvζ(C, C∗) = max
A∈ζ

AdvA(C, C∗)
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Computing Advantage of A Using Decorrelation Theory
The best advantage of a non-adaptive distinguisher A is
computed by d-wise distribution matrices

|M|d

|M|d
[C]d =

BestAdvζ(C, C∗) =
1
2
�[C]d − [C∗]d�∞

P
P = Pr[C(x1) = y1, . . . , C(xd) = yd]

(x1, . . . , xd)

�A�∞ = max
x1,...,xd

�

y1,...,yd

|A(x1,...,xd)(y1,...,yd)|

(y1, . . . , yd)
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A Non-adaptive Iterated Distinguisher of Order d
Iteration of a d-limited non-adaptive distinguisher A “n times”

A Ω

C or C∗

T (x, y) = Ti = 1 or 0

A → 1 (if (T1, . . . , Tn) ∈ Acc) or 0 (if (T1, . . . , Tn) /∈ Acc)

(x1, . . . , xd)

(Ω(x1), . . . , Ω(xd))

repeat n times

Examples:
Linear attacks have order d = 1
Differential attacks have order d = 2

Parameters: n, a distribution for x, a
test T , a set Acc

for i = 1 to n do
pick x = (x1, . . . , xd) at random
get y = (Ω(x1), . . . , Ω(xd))
Ti = T (x, y) ∈ {0, 1}

end for
if (T1, . . . , Tn) ∈ Acc then

output 1
else

output 0
end if
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Security against Non-adaptive Iterated Distinguishers of
Order d

Theorem (Vaudenay)

An upper bound on the advantage of a non-adaptive iterated
distinguisher A of order d against a 2d-decorrelared cipher C with
‖[C]2d − [C∗]2d‖∞ ≤ ε is

AdvA ≤ 5 3

√(
2δ +

5d2

2M
+

3ε
2

)
n2 + nε

• n is the number of iterations

• M is the cardinality of the message space

• δ is the probability that any two iterations have at least
one query in common
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Two Open Problems

Two long-lasting open problems were posed by the previous
Theorem

Problem 1: Could we extend to decorrelation of order 2d− 1 ?

Problem 2: Could we extend with a high δ ?
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A 3-round Feistel Scheme C

�

�

�

F1

F2

F3

• Fi(x) = aiκ−1x
κ−1 + aiκ−2x

κ−2 + · · ·+ ai0
over a finite field GF(pk),
(aiκ−1, a

i
κ−2, . . . , a

i
0) ∈U GF(pk)κ

• F1, F2 and F3 are perfect κ-decorrelated
functions

• C is a κ-decorrelated cipher with
ε = 2κ2/pk (Luby-Rackoff)
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Solution of Problem 1: A cipher decorrelated to the order
2d− 1 may be broken by a non-adaptive iterated attack of order d

In this presentation: d = 2
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How does the Distinguisher work?

�

�

�

F1

F2

F3

0xi
L

xi
L + F1(0)

F (xL
i ) = F2(xi

L + F1(0))

• Previous construction with
κ = 3 over GF(pk), p > 2

• We focus on F to distinguish
the cipher C

• F is a random function:

F (x) = F2(x+ F1(0)), a
polynomial degree ≤ 2
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How does the Distinguisher work?

�

�

�

F1

F2

F3

0xi
L

xi
L + F1(0)

F (xL
i ) = F2(xi

L + F1(0))

In each iteration, we have
chosen plaintexts (x1, x2):

• x1 = xL1 ‖0 and x2 = xL2 ‖0
• xL1 + xL2 = 0

• xL1 6= xL2
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How does the Distinguisher work?

Idea: Recovering a1 of F (x) = a2x
2 + a1x+ a0

• Send (x1, x2) s.t. xL1 + xL2 = 0 and xL1 6= xL2 ,

• Get (y1, y2) = (Ω(x1),Ω(x2))
• Solve

a2(xL
1 )2 + a1x

L
1 + a0 = yR

1

a2(xL
2 )2 + a1x

L
2 + a0 = yR

2

�
⇒ a1 = (yR

1 − yR
2 )(xL

1 − xL
2 )−1

By only two iterations, F is distinguishable from F ∗ with high advantage
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Solution of Problem 2: A cipher decorrelated to the order 2d
may be broken by a non-adaptive iterated attack of order 1 (with
high δ)

In this presentation: d = 1
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How does the Distinguisher work?

�

�

�

F1

F2

F3

0xi
L

xi
L + F1(0)

F (xL
i ) = F2(xi

L + F1(0))

• Previous construction with
κ = 2 over GF(2k)

• Adversary’s choice of the set
of plaintexts is SMALL:

S = {x1, x2, x3, x4}
• xi = xL

i ‖0, 1 ≤ i ≤ 4
• xi’s are pairwise distinct
• xL

1 + xL
2 + xL

3 + xL
4 = 0

• In each iteration, a chosen
plaintext x is taken from S

δ = 1
4
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How does the Distinguisher work?

• Reminder: The trace of an element β ∈ GF(2k) is defined as

Trace(β) = β + β2 + · · ·+ β2k−1

• A distinguishing property of F :

4�

i=1

Trace(F (xL
i )) = 0, when xi = xL

i �0 ∈ S, 1 ≤ i ≤ 4

There is an even number of F (xL
i )’s s.t. Trace(F (xL

i )) = 1
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How does the Distinguisher work?

• Compute Ti = Trace(yRi ) in each iteration

• Calculate the average T̄ = 1
n(T1 + · · ·+ Tn)

• E(T̄ ) and E(T̄ ∗):

E(T̄ ∗)E(T̄ ), E(T̄ ∗) E(T̄ ), E(T̄ ∗) E(T̄ ), E(T̄ ∗)E(T̄ ∗)

1
4

2
4

3
4

4
40

Distinguishing Set: K =
2⋃

m=0

(2m
4
− ε, 2m

4
+ ε
)

, ε > 0

With 1000 iterations, F is distinguishable from F ∗ with high advantage
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Conclusion

Two long-lasting open problems in Decorrelation Theory were
settled:

• The 2d− 1 decorrelation degree is not sufficient for a cipher to
resist against a non-adaptive iterated distinguisher of order d

• When the probability of having a common query between
different iterations is high, the advantage of the distinguisher
can be high, too
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Thanks...
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