Efficient Dissection of Composite
Problems, with Applications to
Cryptanalysis, Knapsacks, and

Combinatorial Search Problems

Itai Dinur!, Orr Dunkelman'?2, Nathan Keller3 and Adi Shamir?!

L Computer Science department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel
3 Department of Mathematics, Bar-llan University, Israel

Single Encryption

The Basic Cryptanalytic Problem:

Input: a list of plaintext-ciphertext
pairs (Plrcl)) (P2)C2)1(P3)C3);"-

<+— "0

Goal: find all keys K such that
C, =E((P,), C, =E(P,),... Ko

Exhaustive Search:

For each n-bit value of K

Perform trial encryptions i.e., test
whether C; =E(P,), if so test whether
C, =E(P,) -..

Time: 2", Memory: constant

(@A

Double Encryption
P

Ky

K,

* C=E, (E,,(P)) with independent keys n-bit keys
Ky, K,

* Suggested following concerns about the small
keys size of DES

MITM Attack (Hellman, Merkle ‘81)

Pl
K. X
K
1 101 | 000
__________ X 011 | 010
Kz liO 1E|.1
Cl

For each n-bit value of K,

Partially encrypt P, and store the n-bit suggestions for X in a
sorted list

For each n-bit value of K,
Partially decrypt C, and look for matches in the list
For each of the =2" matches test the full key

Time 2", memory 2" (ignoring logarithmic factors)

Triple Encryption

Triple Encryption: C=E, (E, (E,,(P))) with
independent keys K,,K,,K;

Triple-DES was used as a de-facto encryption standard
from 1998 until 2001 (and even today...)

A trivial extension of the MITM attack (by
guessing K,) breaks triple encryption in time 22"
and memory 2"

Still the best known algorithm for triple encryption

Multiple Encryption

r-fold encryption: E, (E, (...(E,(P))) with
independent keys K,K,,...,K.

An extension of MITM breaks r-fold encryption
in time T and memory M such that TM=2"=N
(provided M<2[72In)

Suggests an optimal time-memory tradeoff of
TM=N

Improved Attack on 4-Fold Encryption with M=2"

P, P, P, P,
K K
Ki """""" X1 Ki """""" Y1 """""""""""
i el AN i
K4 X3 G b Y3

G C @) C:

—>For each n-bit value of X,

Improved Attack on 4-Fold Encryption with M=2"

Kol B RN
Kz(

----------- 455 B s s

* For each n-bit value of X,
— Given P, X, obtain =2" suggestions for K;,K, using a 2R MITM attack

Improved Attack on 4-Fold Encryption with M=2"

2 KK, 1Y
P, Kl ___________ R0 2 P, B2
______ K2 110 101 | 000
------------ Yz 111 011 | 010
L 100 110 | 111 C, C,

* For each n-bit value of X,

Given P, X, obtain =2" suggestions for K;,K, using a 2R MITM attack
— For each suggestion, obtain Y, and store the triplet in a sorted list

Improved Attack on 4-Fold Encryption with M=2"

K. K, 1Y
___________ P, F2°02 2 P, P,
X ______ 1405102710001 Skt e e Hn 75
K, 2 e M SRR RN st N e
K4(C, 100 110 | 111 G, G

* For each n-bit value of X,
Given P, X, obtain =2" suggestions for K;,K, using a 2R MITM attack
For each suggestion, obtain Y, and store the triplet in a sorted list
—>Given X,,C; obtain =2" suggestions for K;,K, using a 2R MITM attack

Improved Attack on 4-Fold Encryption with M=2"

PZ
K, K5 1Y
P, Kl ___________ R0 2 P, B2
______ K, v 110 101 | 000
N B e eRe P d sy RS raos iy
C, K4 100 110|111 Sy
C2

* For each n-bit value of X,
Given P, X, obtain =2" suggestions for K;,K, using a 2R MITM attack
For each suggestion, obtain Y, and store the triplet in a sorted list
Given X,,C; obtain =2" suggestions for K;,K, using a 2R MITM attack
— For each suggestion, obtain Y, and match with the stored list

Improved Attack on 4-Fold Encryption with M=2"

P, P,
P, P, Ky K1
B e £ REDRIER I S N R
------------ MR Sl b R R
C, C, K4 K4

G, o

For each n-bit value of X,
Given P, X, obtain =2" suggestions for K;,K, using a 2R MITM attack
For each suggestion, obtain Y, and store the triplet in a sorted list
Given X,,C; obtain =2" suggestions for K;,K, using a 2R MITM attack
For each suggestion, obtain Y, and match with the stored list
—For each of the =2" matches test the full key using (P,,C;) and (P,,C,)

Improved Attack on 4-Fold Encryption with M=2"

P, P, P, P,
Kl ___________ I<1 ___________ Kl ___________ Kl ___________
Kol st S AR G N
2 e G ko T 1T ﬂ
Ks Ky Ky Ky

0 0, ¢ G

For each n-bit value of X,
Given P, X, obtain =2" suggestions for K;,K, using a 2R MITM attack
For each suggestion, obtain Y, and store the triplet in a sorted list
Given X,,C; obtain =2" suggestions for K;,K, using a 2R MITM attack
For each suggestion, obtain Y, and match with the stored list
For each of the =2" matches test the full key using (P,C;)and (P,,C,)

Time 22", memory 2" (the same as triple-encryption!) .

Increasing r Further

We obtained TM=23" (instead of 24") for r=4

What happens when we increase r further?
We first fix M=2" and try to minimize T

r|1| | 45

(@)
~N

—
N
>
/“f;»“
3
>
N
3

N
N
>
N
w
-
N
S
=)
%
%/ 00
=) -

Surprisingly Efficient Attack on 7-
Fold Encryption (a 7r attack)

Split the 7r cipher into two
subciphers, a 3r top part and a 4r
bottom part 3—

Guess 2 intermediate encryption i s
values in the middle (one for SE A
(P4,C,) and one for (P,,C,))

Apply a 3r attack to the top part and
store the 2" returned suggestions

Apply the 4r attack to the bottom
part and test the returned keys on
the fly

2

Analysis of the Attack

We guess 2n bits in the middle
The top 3r attack takes 22" time and 2" memory
The bottom 4r attack takes 22" time and 2" memory

The total complexity is T=2%" (instead of 2°")
We obtain TM=2"" (instead of 2/")

Extending the 7r Attack

Our 7r attack divides the cipher asymmetrically
into a top and bottom part

A8 S WAl e Tt B e O 8 B i M
Tl2n [2 |22n\\2§\\2§\\25\ Eﬁ\)@
72n 23n 74n }f\x
24n 25n
Can be extended recursively by dividing the
cipher asymmetrically into subciphers

Constructing Asymmetric Algorithms

Using the asymmetric recursion, we construct a
“magic sequence” of the “turning points”

Magic={4,7,11,16,22,29,37,46,...}
The algorithm becomes increasingly more efficient
compared to the standard MITM

For r=4, we have T=2?"(compared to T=23")

For r=7, we have T=2%" (compared to T=2°")

For r=11, we have T=2/" (compared to T=21")...

We obtain an asymptotic time complexity of
Tzzn(r—\/(Zr))

The algorithms generalize to any amount of memory .

Where does the asymmetry come
from?

Most recursive algorithms divide the problem
symmetrically to avoid bottlenecks

However, there is asymmetry between the top
and bottom subciphers

In the top part, we store all remaining suggestions in
memory -> at most 2" suggestions can remain

In the bottom part, we can check the key suggestions
on the fly -> no restriction on their number!

Hence, it is better to have more rounds in the
bottom part!

Dissection Algorithms

* We obtain a new class of algorithms which we
call dissection algorithms

* We perform “cuts” of different sizes in carefully
chosen places of the encryption structure

Composite Problems

A composite problem

We are given the initial value(s) and the final value(s)
of a cascade of r steps

In each step, one of a list of possible transformations
was applied

The goal: Find out, which transformation was applied
in each step (i.e., find all possible options)

Clearly, r-fold encryption is a composite
problem

Application to Knapsacks

Modular Knapsack Problem:
Input: A list of n integers {a,,a,,...,a,} of n bits
each, and a target integer S
Goal: Find a vector e={¢g,¢,...€ .} where £€{0,1}
such that S=3,....(g-a;) mod 2"

How do we apply the dissection techniques to
the Knapsack problem?

Representing Knapsack as a Block Cipher

P
+(€,-a,)
+(€,-a,)

£=1{€,,&,...€, }

+(g,-a,)

C=P+},....(€-a) (mod 2")

 We fix the plaintext to be the 0 n-bit vector, the
ciphertext to be S

 The knapsack problem reduces to recovering
the key of this block cipher, given one plaintext-
ciphertext pair

Representing Knapsack as 4-Fold
Encryption

 We split the knapsack to 4 independent
knapsacks by splitting the generators and
defining S=0,+0,+05+0, (mod 2")

* XF21gs(0)

0
VERES CoE r D S g T X,
{En/4+1/"')€n/2} _________________________ X
2
{En/2+1l""83n/4} X
_________________________ 3
{E3n/4+1""'£n}

Representing Knapsack as 4-Fold
Encryption

* Problem: In r-fold encryption, we have r “small”
plaintexts -> can efficiently guess intermediate
values. Here we have a single “big” plaintext

* Solution: Split the “block cipher” also vertically
into n/4-bit blocks

1€1,€5.--E/a}
{En/4+1;---1€n/2} _________________________ X2

{En/2+1r""€3n/4}
{€3n/4417+++,En]

Representing Knapsack as 4-Fold
Encryption

* Problem: Dependency between the “vertical”
chunks through addition carries
AC, AC, AC,

KT o N I AT e CIF sl

Lo R e e e X,
{En/4+1r"'/€n/2} __________________ X
2
{En/2+1""'€3n/4} X
_________________________ 3
{€3n/4+11""£n}

* Solution: Guess the intermediate encryption
values in their natural order (from right to left)

Representing Knapsack as 4-Fold
Encryption

Conclusion: We can apply to knapsacks the
algorithm for r-fold encryption, for any r

We choose r according to the amount of
available memory, in order to optimize the
running time of the dissection algorithms

Time-Memory Tradeoft for Knapsacks

16/22 -
L AN Becker, Coron and Joux 2011
7/11 4 . /
17 L x“nn Schroeppel and Shamir 1981
1/2] | f— m
0 11 1 1 1
2216 11 7 4

Examples of Other Composite
Problems

* Rubik’s cube — find a shortest solution given an
initial state

* The matching phase in rebound attacks on
hash functions

* Card Shuffling
° etc...

Probabilistic Algorithms for MITM

Until now we only considered algorithms that
are guaranteed to return all solutions

In the second half of the paper, we combine our
dissection algorithms with the probabalistic
Parallel Collision Search (Van Oorschot and
Wiener, CRYPTO 1996)

We obtain significantly improved attacks for very
small amounts of memory

Conclusions

We improved the best known algorithms for
multiple encryption

Our techniques allow us to improve the best
known algorithms for the knapsack problem
with small memory

These techniques are applicable to other
composite problems that have nothing to do
with cryptography

Open Problems

Are our results optimal?
Can you improve our 7r attack?
Prove lower bounds for composite problems
In particular, prove that T>N1/2
Our algorithms use the smallest number of P/C

pairs. Can you improve the attacks by using
slightly more data?

Find additional applications to dissection
algorithms

Thanks for listening!

