
Efficient Dissection of Composite
Problems, with Applications to
Cryptanalysis, Knapsacks, and

Combinatorial Search Problems

Itai Dinur1, Orr Dunkelman1,2, Nathan Keller3 and Adi Shamir1

1 Computer Science department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel
3 Department of Mathematics, Bar-Ilan University, Israel

Single Encryption

• The Basic Cryptanalytic Problem:

• Input: a list of plaintext-ciphertext
pairs (P1,C1), (P2,C2),(P3,C3),…

• Goal: find all keys K such that

 C1 =EK(P1), C2 =EK(P2),…

• Exhaustive Search:

• For each n-bit value of K

• Perform trial encryptions i.e., test
whether C1 =EK(P1), if so test whether
C2 =EK(P2) …

• Time: 2n, Memory: constant

C

P

K

n

n

n

Double Encryption

• C=EK2
)EK1

)P)) with independent keys n-bit keys
K1,K2

• Suggested following concerns about the small
keys size of DES

C

P

X
K1

K2

MITM Attack (Hellman, Merkle ‘81)

• For each n-bit value of K1
• Partially encrypt P1 and store the n-bit suggestions for X in a

sorted list

• For each n-bit value of K2
• Partially decrypt C1 and look for matches in the list

• For each of the ≈2n matches test the full key

• Time 2n, memory 2n (ignoring logarithmic factors)

C1

P1

X
K1

K2

K1 X
000

010
.
.
.

101

011
.
.
.

111 110

Triple Encryption

• Triple Encryption: C=EK3
(EK2

)EK1
)P))) with

independent keys K1,K2,K3
• Triple-DES was used as a de-facto encryption standard

from 1998 until 2001 (and even today…)

• A trivial extension of the MITM attack (by
guessing K3) breaks triple encryption in time 22n
and memory 2n
• Still the best known algorithm for triple encryption

Multiple Encryption

• r-fold encryption: EKr
)EKr-1

)…(EK1
)P))) with

independent keys K1,K2,…,Kr

• An extension of MITM breaks r-fold encryption
in time T and memory M such that TM=2rn=N
(provided M≤2[r/2]n)

• Suggests an optimal time-memory tradeoff of
TM=N

Improved Attack on 4-Fold Encryption with M=2n

C1

P1

K2
K1

K4

X1

 X2
X3

K3

C2

P2

K2
K1

K4

Y1

 Y2
Y3

K3

• For each n-bit value of X2

C3

P3

C4

P4

Improved Attack on 4-Fold Encryption with M=2n

• For each n-bit value of X2
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack

C3

P3

C4

P4

P1

X2

K1
K2

C2

P2

Improved Attack on 4-Fold Encryption with M=2n

• For each n-bit value of X2
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack
• For each suggestion, obtain Y2 and store the triplet in a sorted list

P2

Y2

K1
K2

K1,K2 Y2

000

010
.
.
.

111

101

011
.
.
.

110

110

111
.
.
.

100 C3

P3

C4

P4

C1

P1

Improved Attack on 4-Fold Encryption with M=2n

• For each n-bit value of X2
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack
• For each suggestion, obtain Y2 and store the triplet in a sorted list
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack

K1,K2 Y2

000

010
.
.
.

111

101

011
.
.
.

110

110

111
.
.
.

100 C3

P3

C4

P4

C2

P2

C1

X2 K3
K4

Improved Attack on 4-Fold Encryption with M=2n

• For each n-bit value of X2
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack
• For each suggestion, obtain Y2 and store the triplet in a sorted list
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack
• For each suggestion, obtain Y2 and match with the stored list

C2

P2

Y2 K3
K4

K1,K2 Y2

000

010
.
.
.

111

101

011
.
.
.

110

110

111
.
.
.

100 C3

P3

C4

P4

C1

P1

K1
K2

Improved Attack on 4-Fold Encryption with M=2n

• For each n-bit value of X2
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack
• For each suggestion, obtain Y2 and store the triplet in a sorted list
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack
• For each suggestion, obtain Y2 and match with the stored list
• For each of the ≈2n matches test the full key using (P3,C3(and (P4,C4(

C1

P1

C2

P2

C4

P4
 K1

K2
K3
K4

C3

P3
 K1

K2
K3
K4

Improved Attack on 4-Fold Encryption with M=2n

• For each n-bit value of X2
• Given P1,X2 obtain ≈2n suggestions for K1,K2 using a 2R MITM attack
• For each suggestion, obtain Y2 and store the triplet in a sorted list
• Given X2,C1 obtain ≈2n suggestions for K3,K4 using a 2R MITM attack
• For each suggestion, obtain Y2 and match with the stored list
• For each of the ≈2n matches test the full key using (P3,C3(and (P4,C4(

• Time 22n, memory 2n (the same as triple-encryption!)

C4

P4
 K1

K2
K3
K4

C3

P3
 K1

K2
K3
K4

C2

P2
 K1

K2
K3
K4

C1

P1
 K1

K2
K3
K4

Increasing r Further

• We obtained TM=23n (instead of 24n) for r=4

• What happens when we increase r further?

• We first fix M=2n and try to minimize T

r

T

1

2n

2

2n

3

22n

4

23n

5

24n

6

25n

7

26n

8

27n

…

23n 24n 25n 26n 22n

Surprisingly Efficient Attack on 7-
Fold Encryption (a 7r attack)
• Split the 7r cipher into two

subciphers, a 3r top part and a 4r
bottom part

• Guess 2 intermediate encryption
values in the middle (one for
(P1,C1) and one for (P2,C2))
• Apply a 3r attack to the top part and

store the 2n returned suggestions

• Apply the 4r attack to the bottom
part and test the returned keys on
the fly

3

4

2

Analysis of the Attack

• We guess 2n bits in the middle

• The top 3r attack takes 22n time and 2n memory

• The bottom 4r attack takes 22n time and 2n memory

• The total complexity is T=24n (instead of 26n)

• We obtain TM=25n (instead of 27n)

Extending the 7r Attack

• Our 7r attack divides the cipher asymmetrically
into a top and bottom part

• Can be extended recursively by dividing the
cipher asymmetrically into subciphers

r

T

1

2n

2

2n

3

22n

4

23n

5

24n

6

25n

7

26n

8

27n

…

23n 24n 25n 26n 22n

24n 25n

Constructing Asymmetric Algorithms

• Using the asymmetric recursion, we construct a
“magic sequence” of the “turning points”

 Magic={4,7,11,16,22,29,37,46,…}

• The algorithm becomes increasingly more efficient
compared to the standard MITM
• For r=4, we have T=22n (compared to T=23n)

• For r=7, we have T=24n (compared to T=26n)

• For r=11, we have T=27n (compared to T=210n)…

• We obtain an asymptotic time complexity of

 T≈2n(r-√(2r))

• The algorithms generalize to any amount of memory

Where does the asymmetry come
from?

• Most recursive algorithms divide the problem
symmetrically to avoid bottlenecks

• However, there is asymmetry between the top
and bottom subciphers

• In the top part, we store all remaining suggestions in
memory -> at most 2n suggestions can remain

• In the bottom part, we can check the key suggestions
on the fly -> no restriction on their number!

• Hence, it is better to have more rounds in the
bottom part!

Dissection Algorithms

• We obtain a new class of algorithms which we
call dissection algorithms

• We perform “cuts” of different sizes in carefully
chosen places of the encryption structure

Composite Problems

• A composite problem

• We are given the initial value(s) and the final value(s)
of a cascade of r steps

• In each step, one of a list of possible transformations
was applied

• The goal: Find out, which transformation was applied
in each step (i.e., find all possible options)

• Clearly, r-fold encryption is a composite
problem

Application to Knapsacks

• Modular Knapsack Problem:

• Input: A list of n integers {a1,a2,…,an} of n bits
each, and a target integer S

• Goal: Find a vector ɛ={ɛ1,ɛ2…ɛn} where ɛiϵ{0,1}
such that S=∑1≤i≤n(ɛi∙ai) mod 2n

• How do we apply the dissection techniques to
the Knapsack problem?

Representing Knapsack as a Block Cipher

• We fix the plaintext to be the 0 n-bit vector, the
ciphertext to be S

• The knapsack problem reduces to recovering
the key of this block cipher, given one plaintext-
ciphertext pair

ɛ={ɛ1,ɛ2…ɛn}

P

C=P+∑1≤i≤n(ɛi∙ai) (mod 2n)

+(ɛ1∙a1)
+(ɛ2∙a2)

+(ɛn∙an)

…
…

Representing Knapsack as 4-Fold
Encryption

• We split the knapsack to 4 independent
knapsacks by splitting the generators and
defining S=σ1+σ2+σ3+σ4

 (mod 2n)
• Xi=∑1≤j≤i(σ

j)

{ɛ1,ɛ2…ɛn/4}

0

S

{ɛn/4+1,…,ɛn/2}

{ɛn/2+1,…,ɛ3n/4}

{ɛ3n/4+1,…,ɛn}

X1

X2

X3

Representing Knapsack as 4-Fold
Encryption

• Problem: In r-fold encryption, we have r “small”
plaintexts -> can efficiently guess intermediate
values. Here we have a single “big” plaintext

• Solution: Split the “block cipher” also vertically
into n/4-bit blocks

{ɛ1,ɛ2…ɛn/4}

0

{ɛn/4+1,…,ɛn/2}

{ɛn/2+1,…,ɛ3n/4}

{ɛ3n/4+1,…,ɛn}

X1

X2

X3

0 0 0

S1 S2 S3 S4

Representing Knapsack as 4-Fold
Encryption

• Problem: Dependency between the “vertical”
chunks through addition carries

• Solution: Guess the intermediate encryption
values in their natural order (from right to left)

{ɛ1,ɛ2…ɛn/4}

{ɛn/4+1,…,ɛn/2}

{ɛn/2+1,…,ɛ3n/4}

{ɛ3n/4+1,…,ɛn}

X1

X2

X3

AC1 AC2 AC3

Representing Knapsack as 4-Fold
Encryption

• Conclusion: We can apply to knapsacks the
algorithm for r-fold encryption, for any r

• We choose r according to the amount of
available memory, in order to optimize the
running time of the dissection algorithms

Time-Memory Tradeoff for Knapsacks

Becker, Coron and Joux 2011

Schroeppel and Shamir 1981

Examples of Other Composite
Problems

• Rubik’s cube – find a shortest solution given an
initial state

• The matching phase in rebound attacks on
hash functions

• Card Shuffling

• etc…

Probabilistic Algorithms for MITM

• Until now we only considered algorithms that
are guaranteed to return all solutions

• In the second half of the paper, we combine our
dissection algorithms with the probabalistic
Parallel Collision Search (Van Oorschot and
Wiener, CRYPTO 1996)

• We obtain significantly improved attacks for very
small amounts of memory

Conclusions

• We improved the best known algorithms for
multiple encryption

• Our techniques allow us to improve the best
known algorithms for the knapsack problem
with small memory

• These techniques are applicable to other
composite problems that have nothing to do
with cryptography

Open Problems

• Are our results optimal?
• Can you improve our 7r attack?

• Prove lower bounds for composite problems

• In particular, prove that T≥N1/2

• Our algorithms use the smallest number of P/C
pairs. Can you improve the attacks by using
slightly more data?

• Find additional applications to dissection
algorithms

Thanks for listening!

