Tightly Secure Signatures and Public-Key Encryption

Dennis Hofheinz and Tibor Jager Karlsruhe Institute of Technology

CRYPTO 2012

"Tight" Security

- New cryptosystems usually come with proof that
 - under certain complexity assumptions
 - the scheme has certain security properties ("security proof")
- Standard outline of a security proof:
 - 1. Define a **security model**
 - 2. Show that an efficient **attacker A** implies an efficient algorithm **R(A)** solving some **hard problem P**

Security proof is "tight", if R(A) has (about) the same running time and success probability as A

Secure Public-Key Encryption

- Classical security models for public-key encryption:
 - IND-CPA security
 - IND-CCA security
- Many schemes with tight security proof
- Note that these models consider
 - only one pk, and
 - only one ciphertext
 - "(1,1)-security"

Public-Key Encryption in the Multi-User Setting

In reality:

- N public keys
- L ciphertexts per public key
- "(N,L)-security"

(1,1)-security ⇒ (N,L)-security [Bellare, Boldyreva, Micali '00]

But the reduction is **not tight** (loses a factor of **N·L** of success probability)

An Example

(Following [Bellare, Boldyreva, Micali`00])

 Assume an encryption scheme with (1,1)-security proof

Proven **security level decreases** with increasing number of users and ciphertexts

Can we avoid this security loss?

- Trivial solutions:
 - based on non-standard / parametrized complexity assumptions
 - in the Random Oracle Model
- Bellare, Boldyreva, Micali (Eurocrypt '00):
 - ElGamal is tightly (N,L)-IND-CPA secure
 - Cramer-Shoup is tightly (N,1)-IND-CCA secure

Our goal: Construct a public-key encryption scheme with

- tight (N,L)-IND-CCA security proof
- in the standard model
- based on a standard assumption

The Difficulty of Tight IND-CCA Security in the Multi-User Setting

- Known techniques exploit that there is only one challengeciphertext, for instance:
 - "Naor-Yung paradigm" [NY'90]
 with **one-time** simulation-sound
 NIZK
 - All-but-one simulations(e.g. ABO lossy TDFs [PW'08])

— ...

(1,1)-IND-CCA Security Experiment

The Difficulty of Tight IND-CCA Security in the Multi-User Setting

(N,L)-IND-CCA Security Experiment

(1,1)-IND-CCA Security Experiment

The Difficulty of Tight IND-CCA Security in the Multi-User Setting

(N,L)-IND-CCA Security Experiment

- Known techniques not immediately applicable
- Can we adopt them to the multi-user setting?
 - "Naor-Yung paradigm" usesone-time ssNIZKs
 - Do many-time ssNIZKs help?
 - Can we construct them, with **tight** security proof?

Our Approach

- New constructions
- Known concepts
- All building blocks based on **DLIN** in groups with symmetric pairing

Structure-Preserving Signatures (SPS)

- "Structure-preserving":
 - Public-keys, messages, and signatures are group elements (in bilinear group setting)
 - Signature verification checks conjunction of pairing product equations (PPE)
- Blend nicely with **Groth-Sahai proofs** [GS'08]
 - Useful tool for efficient cryptographic constructions
- No known SPS with tight reduction to standard assumption

One-time SPS Scheme

- Let G be a group with pairing e : G x G \rightarrow G_T
- Let E((a,b,c),d) := (e(a,d),e(b,d),e(c,d))
- Signature scheme with message space Gⁿ
- pk = $(g,h,k, U_1,..., V_n,X,z)$ where
 - $-g,h,k,z \leftarrow G$
 - $-U_i = (g^{ui}, h^{vi}, k^{ui+vi}) \subseteq G^3$ and $X = (g^x, h^y, k^{x+y}) \subseteq G^3$
- To sign $(m_1,...,m_n) \subseteq G^n$, compute $\sigma = (s,t)$ with

$$\prod_{i \in [n]} E(U_i, m_i) \cdot E((g, 1, k), s) \cdot E((1, h, k), t) = E(X, z)$$

Tightly secure (EUF-1-naCMA) under DLIN

Tightly Secure Tree-based Signature

- Assign fresh $(X,z) \subseteq G^3 \times G$ to each node
- Fix $(g,h,k, U_1,..., V_8)$ for whole tree
- Intuition: each node assigned with pk of one-time sig
 - E.g., node (X_0, z_0) with $pk_0 = (g,h,k, U_1,..., U_8, X_0, z_0)$
- Gives rise to "Merkle tree" scheme [Mer'79]

Summary

- New constructions
- Known concepts
- All building blocks based on **DLIN** in groups with symmetric pairing

Open Problems

- Further applications to tightly-secure constructions?
 - ssNIZK + [Camenisch, Chandran, Shoup'09]= tight KDM-CCA-secure encryption
- Shorter tree-based SPS?
 - Abe et al. (Asiacrypt `12):
 more efficient one-time SPS
 ⇒more efficient tree-based SPS
- SPS with
 - Short signatures and public keys
 - tight security from simple complexity assumption?

