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Setting

Blockcipher construction

pseudorandom function — pseudorandom permutation

Most current methods rely on either:
Feistel networks, or
SP networks

New method: Swap-or-not shuffle. Stronger provable-security
results.



Contribution: Swap-or-not

» A new method to construct a blockcipher

» A proof that it works, and with much better bounds than with
Feistel



Security of Swap-or-not : Numerical Examples

Domain size  # rounds AdvCCA  # queries
64-bit strings 264 1200 < 10710 263

social security numbers 10?340 <1079 108
credit card numbers 106 500 < 10710 10



Flexible domain

Our cipher works directly on nonbinary domains such as credit card
numbers and social security numbers.



The Problem

PRF — PRP

Luby, Rackoff 88
Patarin 90, 03, 10
Maurer 92

Maurer, Pietrzak 03

M, Rogaway, Stegers 09



Proven upper bounds for enciphering n-bit strings:

method # rounds  # queries
Balanced Feistel 3 q~ 24 Luby, Rackoff
r q~ on/2-1/r Maurer, Pietrzak
6 q ~ 2n/2 Patarin
Thorp shuffle O(n) g~ 209 M, Rogaway, Stegers

Swap-or-not O(n) g~ (1—¢€)2" today's talk



Format-preserving Encryption

Finite set M of messages.

Eg M = {social security numbers}
M = {credit card numbers}

Want PRP 7 : M — M.

It's not clear how to do this using AES.



Format-preserving Encryption

Bounds on balanced Feistel give security up to roughly /| M|
queries.

Problem. M = {social security numbers}

IM| = 10°
vV IM| = 32,000 not too big

Swap-or-not provides a practical solution to FPE on domains of
troublesome size.



Enciphering scheme <— Card shuffle

111 [ L] 111
110 [] 1110
101 [] [ ] 101
100 [_] 1100
011 [] 1011
010 [] ] 010
001 [] [] 001
000 [] 1 000
messages encodings

Oblivious shuffle (Naor): you can follow the trajectory of one card
without attending to the others.



Swap-or-not shuffle

111
110
101
100
011
010
001
000

At step t, choose K; uniformly at random from {0,1}". Pair each
x with K; @ x. For each pair, flip a coin. If the coin lands heads,
swap the cards at those locations.



Swap-or-not shuffle

111
110
101
100
011
010
001
000

K induces a random
matching.

(Pictured is the case
K, = 100.)

At step t, choose K; uniformly at random from {0,1}". Pair each
x with K; @ x. For each pair, flip a coin. If the coin lands heads,

swap the cards at those locations.



Alternative view

function Fxp(z) //swap-or-not
fort < 1tor do

T + max(z, K; © x)

b Fy(T)
fb=1thenxz+ K; Dz
return x

Cipher E encrypts € {0,1}" using a key
KF naming Ki,...,K, € {0,1}" and round
functions Fi,..., F, : {0,1}" — {0, 1}.

Decryption: same, except run from r down to 1.

Why this works: Each round is its own inverse. To reverse the
effect of the final round, run it again. Then run the next-to-last
round, and so on.



Alternative view

Note that m(z) is of the form 2 @ > ;¢ K;.

But this is not linear. S, is adaptively constructed.



Quantifying the advantage of an adversary

Random permutation .

Adversary A queries m and 7!, then outputs a bit b. His
advantage is P(b=1) — P,(b=1).

Adv®?(q) = maximum advantage when A is limited to ¢ queries
Adv"™P*(gq) = maximum advantage when A is limited to ¢

nonadaptive queries of 7

Theorem (Maurer, Pietrzak, Renner 2007)

If F and G are blockciphers on the same message space, then, for

any g,
Adviioa(q) < Advip™(q) + Adv™(q).



Quantitative bound

Theorem
For r rounds of swap-or-not on {0,1}",

Adv©(g) <

22+3n/2 q+2" r/4+1
r +4 2n+1

If ¢ < (1 —¢€)2™ then the advantage is small after O(n) rounds.



CCA Advantage (UB)
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Proof sketch

By MPROQ7, we may assume a non-adaptive adversary who queries
only 7. For simplicity, suppose the queries are 7(0),...,7(q — 1).

Game: Do r swap-or-not shuffles. Now turn over the cards labeled
0,1,2,... (reveal w(0),7(1),...).

Before each step, the adversary pays $1. If he guesses the next
card’s location correctly, he wins $k% if k cards were face down.

Claim: If expected net winnings = 0, then the adversary has small
advantage.



It remains to show that the expected winnings are small. This is
true even if when we turn over a card we reveal its whole trajectory!






E(net winnings)

Uncovered cards

3/2




Let w;(t) be the expected net winnings if the adversary guesses i.
Note: the adversary can expect to win max; wj(t).

Let W(t) = >, wi(t)>.

Claim: If ¢ < (1 — €)2" then

E(W(t+1)) < (1—¢/2)E(W(1)).



Say an covered card is good if it is matched to another covered
card.

Not good:

wj 0




Good:

Wy

gl

w2+ w? = %(wf + wJQ) + wiw;j

cross terms
are 0 on the
average



Recall that W (t) = >, w;(t)?.

Good cards are expected to contribute 3w?(t) to W(t+1).
Not good cards contribute w?(t) to W(t +1). It follows that

E(W(t+1)|W,) = P(good)3W(t)+ P(not good)W (t)
= (1—1P(good)) W(t)
< (1—¢/2)W (1),

since P(good) > e. O



Using swap-or-not to make confusion /diffusion ciphers

Example: Specify F; by an n-bit string L; and let Fy () = L; O %
be the inner product of L; and 7.

function Exr(x) //inner product realization
fort < 1 to r do

Z + max(z, K; © x)

b« Lt®§,‘\
fb=1thenz+ K;dx
return x

Cipher E encrypts z € {0,1}" using a key KL
that specifies K1,..., K, L1,..., L, € {0,1}".

We don’t know how many rounds to suggest.



More general domain
If the domain is a finite, abelian group (G, +), the cipher is the
same as before, except
» Choose K uniformly at random from G.

» Pair x with K; — x.

function Fxp(x) //generalized domain
for t <~ 1 to r do

T + max(x, Ky — 1)

ifb=1thenz «+ K; —x
return x

Cipher E encrypts * € G using a key KF
naming Ki,...,K, € G and round functions
Fl,...,FTZG%{O,l}.




