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Hidden Field Public Key Cryptosystems

F ⊂ K finite fields, |F| = q, [F : K] = n, |K| = qn

K P−−−−→ K

σ

x τ

y
Fn {p1,...,pn}−−−−−−→ Fn

Private Key

Public Key

P(X ) ∈ K[X ]/
〈
X qn − X

〉
pi (x1, . . . , xn) ∈ F[x1, . . . , xn]/

〈
xq
1 − x1, . . . , x

q
n − xn

〉
σ, τ invertible affine linear maps



Patarin’s HFE System

P(X ) is

of low total degree, D
(efficient decryption).

quadratic over F so that
pi (x1, . . . , xn) are quadratic
(efficient encryption)

K P(X )−−−−→ K

σ

x τ

y
Fn {p1,...,pn}−−−−−−→ Fn

P(X ) =
∑

qi+qj≤D

aijX
qi+qj

+
∑
qi≤D

biX
qi

+ c

where aij , bi , c ∈ K.
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Direct Algebraic Attack

Use efficient Gröbner basis (algebraic) algorithms to solve the
system of equations:

p1(x1, . . . , xn) = y1

p2(x1, . . . , xn) = y2

...

pn(x1, . . . , xn) = yn

Algorithm terminates significantly quicker on HFE systems than on
random systems. How does the restriction on the degree D of P
affect the complexity of algebraic solvers?

Granboulan, Joux, Stern (Crypto 2006): If q = 2, complexity
is quasi-polynomial.
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Degree of Regularity

Degree of Regularity: Lowest degree at which non-trivial “degree
falls” occur.

deg

(∑
i

gipi

)
< max{deg(gi ) + deg(pi )}

Trivial degree falls:

pq−1
i pi = pq

i = pi , pjpi − pipj = 0

Gröbner basis algorithms terminate shortly after this degree
is reached.
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Degree of Regularity of Leading Terms

Let ph
i be the highest degree part of pi considered as an element of

the truncated polynomial ring

ph
i ∈

F[x1, . . . , xn]〈
xq
1 , . . . , xq

n

〉

Degree of Regularity of ph
1 , . . . , ph

n is first degree at which
non-trivial relations occur.

deg

(∑
i

fip
h
i

)
= 0

Trivial relations: (ph
i )q−1ph

i = 0, ph
j ph

i − ph
i ph

j = 0
Then

Dreg(p1, . . . , pn) = Dreg(p
h
1 , . . . , ph

n)
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Dubois-Gama Reduction

Theorem. Dreg(p
h
1 , . . . , ph

n) ≤ Dreg(p
h
1 , . . . , ph

j )

Recall that

P(X ) =
∑

qi+qj≤D

aijX
qi+qj

+
∑
qi≤D

biX
qi

+ c

Define

P0(X1, . . . ,Xn) =
∑

aijXiXj ∈ K[X1, . . . ,Xn]/
〈
X q

1 , . . . ,X q
n

〉
Galois theory and filtered-graded arguments yield the key result:

Theorem. Dreg(p
h
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The main theorem

We give a global upper bound on the degree of regularity (in
the sense of DG) of an HFE system.

Main Theorem.
The degree of regularity of the system defined by P is
bounded by

Rank(P0)(q − 1)

2
+ 2 ≤

(q − 1)(blogq(D − 1)c+ 1)

2
+ 2

if Rank(P0) > 1. Here Rank(P0) is the rank of the quadratic
form P0.

These are universal bounds that require no additional
assumption.
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The contribution of GJS

Granboulan, Joux and Stern outlined a new way to bound the
degree of regularity in the case q = 2.

Their approach – lift the problem back up to the extension
field K.

They sketched a way to connect the degree of regularity of an
HFE system to the degree of regularity of a lifted system over
the big field.
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The key assumptions of GJS

Assuming
1 the degree of regularity of an HFE system = the degree of

regularity of a lifted system over the big field.
2 the degree of regularity of a subsystem ≥ than that of the

original system;
3 asymptotic analysis results of the degree of regularity of

random systems;
4 the subsystem is generic or random,

they derived heuristic asymptotic bounds for the case
q = 2.

To derive any definitive general bounds on the degree of
regularity for general q and n – an open problem.
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Interest in the odd q case

The work by Ding, Schmidt, Werner.
The role of the field equations X q

1 − X2, . . . ,X
q
n − X1.

No asymptotic analysis for systems over odd q.
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The work of Dubois and Gama

A breakthrough in the case of general q came in the recent
work of Dubois and Gama DG – a rigorous mathematical
foundation for the arguments in GJS.

A new method to compute the degree of regularity over any
field and an inductive algorithm that can be used to calculate
a bound for the degree of regularity for any choice of q, n and
D.

No closed formula.
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We find a bound for Dreg(P0).

The proof is a constructive proof – explicitly constructing
non-trivial syzygies.
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The Constructive Proof

finding Dreg(P0) = finding low-degree non-trivial annihilators
in an associated graded algebra.

explicit construction of non-trivial annihilators.

basis of the constructions – the classification of quadratic
forms.
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The case when q is even

A quadratic polynomial in the polynomial algebra
K[X1, . . . ,Xn] is equivalent to an polynomial of one of the
following forms for some r ≤ n:

1 X1X2 + ... + Xr−1Xr

2 X1X2 + ... + Xr−2Xr−1 + X 2
r

3 X1X2 + ... + Xr−1Xr + X 2
r−1 + cX 2

r where c ∈ K\{0} satisfies
TRK(c) = 1.



An example of annihilator

when rank is 4:
x1x2 + x3x4.

The annihilators:

xq−1
1 xq−1

3 , xq−1
1 xq−1

4 , xq−1
2 xq−1

3 , xq−1
2 xq−1

4

(x1x2 + x3x4)x
q−1
1 xq−1

3 = xq
1 x2x3 + x1x

q
3 x4 = 0.

Proof that the annihiltor is non-trivial.
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Conclusion

For fixed q the degree of regularity is O(logq D).
Assuming that the proper parameter: D = O(nα), the
complexity will be quasi-polynomial.

Conjecture: assume
1) q itself is of scale O(n),
2) the bound above is asymptotically sharp,
then the degree of regularity will be at least of the scale O(n),
so inverting HFE systems will be exponential.
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Our bound not optimal.

A detailed comparison of our bound with the bound
calculated in DG.

As n becomes large relative to q, the two bounds appear to be
getting very close.
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Future (or current) work

The Square case: P(X ) = X 2. (JD, IACR eprint)

The HFE Minus case. (JD and T. Kleinjung)

The higher degree (non-quadratic) case (TH and J. Schlather)

Exact calculation of Dreg(P0) (TH and J. Schlather)

Better comparison with DG’s results.

Better bounds

Apply our technique to other systems and provable security.
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