The Torsion-Limit for Algebraic Function Fields and Its Application to Arithmetic Secret Sharing

Ignacio Cascudo (CWI Amsterdam)
Ronald Cramer (CWI & Leiden Univ.)
Chaoping Xing (NTU Singapore)

CRYPTO 2011
Thursday, August 18, 2011
Let \mathbb{F}_q be a finite field, $k, n \in \mathbb{Z}_{\geq 1}$ (k “size of the secret”, n “number of shares”).

Definition (n-Code)

An n-code for \mathbb{F}_q^k is a \mathbb{F}_q-vector subspace

$$C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$$

such that
Let \mathbb{F}_q be a finite field, $k, n \in \mathbb{Z}_{\geq 1}$ (k “size of the secret”, n “number of shares”).

Definition (n-Code)

An n-code for \mathbb{F}_q^k is a \mathbb{F}_q-vector subspace

$$C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$$

such that

1. The “secret” coordinate* of C can take any value in \mathbb{F}_q^k.

*Think of $x \in C$ as $x = (x_0, x_1, \ldots, x_n)$ where:

- $x_0 \in \mathbb{F}_q^k$ secret “coordinate”
- $x_1, \ldots, x_n \in \mathbb{F}_q$ share coordinates.
Let \mathbb{F}_q be a finite field, $k, n \in \mathbb{Z}_{\geq 1}$ (\(k\) “size of the secret”, \(n\) “number of shares”).

Definition (\(n\)-Code)

An \(n\)-code for \mathbb{F}^k_q is a \mathbb{F}_q-vector subspace

$$C \subset \mathbb{F}^k_q \times \mathbb{F}^n_q$$

such that

1. The “secret” coordinate* of \(C\) can take any value in \mathbb{F}^k_q.
2. The \(n\) “share” coordinates of \(C\) jointly determine the secret coordinate.

*Think of \(x \in C\) as $x = (x_0, x_1, \ldots, x_n)$ where:

- $x_0 \in \mathbb{F}^k_q$ secret “coordinate”
- $x_1, \ldots, x_n \in \mathbb{F}_q$ share coordinates.
Definition (r-reconstructing)

An n-code C for \mathbb{F}_q^k is r-reconstructing $(1 \leq r \leq n)$ if it holds that any r shares determine the secret.

Note that an n-code is n-reconstructing by definition.
Definition (r-reconstructing)

An n-code C for \mathbb{F}_q^k is r-reconstructing ($1 \leq r \leq n$) if it holds that any r shares determine the secret.

Note that an n-code is n-reconstructing by definition.

Definition (t-Disconnected and t-Uniform n-Code)

An n-code C for \mathbb{F}_q^k is t-disconnected if $t = 0$, or else if $1 \leq t < n$, the secret is “independent” of any t shares.
Definition (r-reconstructing)

An n-code C for \mathbb{F}_q^k is r-reconstructing ($1 \leq r \leq n$) if it holds that any r shares determine the secret.

Note that an n-code is n-reconstructing by definition.

Definition (t-Disconnected and t-Uniform n-Code)

An n-code C for \mathbb{F}_q^k is t-disconnected if $t = 0$, or else if $1 \leq t < n$, the secret is "independent" of any t shares.

If, additionally, any set of t shares is uniformly distributed in \mathbb{F}_q^t, C has t-uniformity.
Definition (Powers of an n-Code)

Let $d \in \mathbb{Z}_{>0}$. For C an n-code for \mathbb{F}_q^k, let

$$C^{*d} := \mathbb{F}_q \langle \{ c^{(1)} \ast \ldots \ast c^{(d)} : c^{(1)}, \ldots, c^{(d)} \in C \} \rangle.$$

(where \ast denotes coordinatewise product)
Definition (Powers of an \(n \)-Code)

Let \(d \in \mathbb{Z}_{>0}. \) For \(C \) an \(n \)-code for \(\mathbb{F}_q^k \), let

\[
C^{*d} := \mathbb{F}_q < \{ c^{(1)} \ast \ldots \ast c^{(d)} : c^{(1)}, \ldots, c^{(d)} \in C \} > .
\]

(where \(\ast \) denotes coordinatewise product)

Remark (Powering Need Not Preserve \(n \)-Code)

Let \(C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n \) be an \(n \)-code for \(S \). Consider \(C^{*d} \) \((d \geq 2) \).

- Trivially, the secret coordinate of \(C^{*d} \) can take any value.
Definition (Powers of an n-Code)

Let $d \in \mathbb{Z}_{>0}$. For C an n-code for \mathbb{F}_q^k, let

$$C^{*d} := \mathbb{F}_q < \{c^{(1)} \ast \ldots \ast c^{(d)} : c^{(1)}, \ldots, c^{(d)} \in C\} > .$$

(where \ast denotes coordinatewise product)

Remark (Powering Need Not Preserve n-Code)

Let $C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$ be an n-code for S. Consider C^{*d} ($d \geq 2$).

- Trivially, the secret coordinate of C^{*d} can take any value.
- But: the share coordinates of C^{*d} need not determine the secret coordinate.
Definition (Powers of an n-Code)

Let $d \in \mathbb{Z}_{>0}$. For C an n-code for \mathbb{F}_q^k, let

$$C^*d := \mathbb{F}_q \subset \{c^{(1)} \ast \ldots \ast c^{(d)} : c^{(1)}, \ldots, c^{(d)} \in C\} > .$$

(where \ast denotes coordinatewise product)

Remark (Powering Need Not Preserve n-Code)

Let $C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$ be an n-code for S. Consider C^*d ($d \geq 2$).

- Trivially, the secret coordinate of C^*d can take any value.
- But: the share coordinates of C^*d need not determine the secret coordinate.
- Thus: C^*d need not be an n-code for \mathbb{F}_q^k.
Definition

An \((n, t, d, r)\)-arithmetic secret sharing scheme for \(\mathbb{F}_q^k\) (over \(\mathbb{F}_q\)) is an \(n\)-code \(C\) for \(\mathbb{F}_q^k\) such that:

1. \(t \geq 1, d \geq 2\).
2. The \(n\)-code \(C\) is \(t\)-disconnected.
3. \(C^*d\) is in fact an \(n\)-code for \(\mathbb{F}_q^k\).
4. The \(n\)-code \(C^*d\) is \(r\)-reconstructing.
An (n, t, d, r)-arithmetic secret sharing scheme for \mathbb{F}_q^k (over \mathbb{F}_q) is an n-code C for \mathbb{F}_q^k such that:

1. $t \geq 1$, $d \geq 2$.
2. The n-code C is t-disconnected.
3. C^*d is in fact an n-code for \mathbb{F}_q^k.
4. The n-code C^*d is r-reconstructing.

The arithmetic SSS has *uniformity* if, in addition, the n-code C has t-uniformity.
Arithmetic Secret Sharing Schemes

Definition

An \((n, t, d, r)\)-arithmetic secret sharing scheme for \(\mathbb{F}_q^k\) (over \(\mathbb{F}_q\)) is an \(n\)-code \(C\) for \(\mathbb{F}_q^k\) such that:

1. \(t \geq 1, d \geq 2\).
2. The \(n\)-code \(C\) is \(t\)-disconnected.
3. \(C^*d\) is in fact an \(n\)-code for \(\mathbb{F}_q^k\).
4. The \(n\)-code \(C^*d\) is \(r\)-reconstructing.

The arithmetic SSS has uniformity if, in addition, the \(n\)-code \(C\) has \(t\)-uniformity.

An \((n, t, 2, n - t)\)-arithmetic SSS is a \(t\)-strong multiplicative linear SSS (Cramer/Damgaard/Maurer EUROCRYPT 2000).

This notion is in turn generalized by arithmetic codices.

Cascudo, Cramer, Xing

The Torsion-Limit for Algebraic Function Fields and Its...
Remark (Arithmetic SSS exist)

If \(n + k \leq q \) and \(d(t + k - 1) < n - t \), then:

Shamir (or **Franklin/Yung** for \(k > 1 \)) schemes are
(\(n, t, d, n - t \))-arithmetic SSS with uniformity for \(\mathbb{F}_q^k \).
Remark (Arithmetic SSS exist)

If \(n + k \leq q \) and \(d(t + k - 1) < n - t \), then:

Shamir (or Franklin/Yung for \(k > 1 \)) schemes are \((n, t, d, n - t)\)-arithmetic SSS with uniformity for \(\mathbb{F}_q^k \).

Question (2006):
What happens if \(q \) is fixed and \(n \) is unbounded? Can positive rates \((t = \Omega(n))\) be achieved?
(Note: We consider \(d \) constant, as otherwise \(t = \Omega(n) \) is provably impossible).
Can positive rates ($t = \Omega(n)$) be achieved?

Chen/Cramer (2006): Yes, if $A(q) > 2d$. *Includes q square with $q > (2d+1)^2$ and all q very large.

Cascudo/Chen/Cramer/Xing (2009): For $d = 2$ and without uniformity, any finite field F_q. *The Torsion-Limit for Algebraic Function Fields and Its...
Can positive rates \(t = \Omega(n) \) be achieved?

- Chen/Cramer (2006): Yes, if \(A(q) > 2d \).* Includes \(q \) square with \(q > (2d + 1)^2 \) and all \(q \) very large.

*\(A(q) \) Ihara’s constant of \(\mathbb{F}_q \)
Can positive rates \((t = \Omega(n))\) be achieved?

- **Chen/Cramer (2006):** Yes, if \(A(q) > 2d\).* Includes \(q\) square with \(q > (2d + 1)^2\) and all \(q\) very large.
- **Cascudo/Chen/Cramer/Xing (2009):** For \(d = 2\) and **without uniformity**, *any* finite field \(\mathbb{F}_q\).

\(A(q)\) Ihara’s constant of \(\mathbb{F}_q\)
Original application: IT-secure multi-party computation, **malicious adversary case** (Cramer/Damgaard/Maurer 2000). Asymptotical version of BenOr/Goldwasser/Wigderson88, Chaum/Crépeau/Damgaard88
Original application: IT-secure multi-party computation, **malicious adversary case** (Cramer/Damgaard/Maurer 2000).
Asymptotical version of BenOr/Goldwasser/Wigderson88, Chaum/Crépeau/Damgaard88

But lately: Unexpected applications in *two-party cryptography*, usually via MPC-in-the-head paradigm:

“**secure two-party computation**” with small error and low communication.
“Players” are virtual processes!
(STOC 2007) Ishai/Kushilevitz/Ostrovsky/Sahai: Zero knowledge from multi-party computation.

(CRYPTO 2008) Ishai/Prabhakaran/Sahai: Founding Cryptography on Oblivious Transfer - Efficiently.

(CRYPTO 2011, Previous talk!) Ishai/Kushilevitz/Ostrovsky/Prabhakaran/Sahai/Wullschleger: Constant-Rate Oblivious Transfer from Noisy Channels.

Theorem (Cramer/Daza/Gracia/Jimenez/Leander/Marti/Padro, CRYPTO 05)

Let C be a $(n, t, 2, n - t)$-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q. Then C has efficient error correction of the secret in the presence of t faulty shares.
Theorem (Cramer/Daza/Gracia/Jimenez/Leander/Marti/Padro, CRYPTO 05)

Let C be a $(n, t, 2, n - t)$-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q. Then C has efficient error correction of the secret in the presence of t faulty shares.

We generalize this:

Theorem

Let C be a $(n, t, d, n - t)$-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q. Then $C^{\ast(d-1)}$ has efficient error correction of the secret in the presence of t faulty shares.
In this paper:

- We introduce a new technique to construct algebraic geometric SSS.
- We define a new AG notion (torsion limit) and prove bounds for it.
- As a result we get (case $d = 2$):

Theorem

For $q = 8, 9$ and all $q \geq 16$ there is an infinite family of $(n, t, 2, n - t)$-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q with t-uniformity where n is unbounded, $k = \Omega(n)$ and $t = \Omega(n)$.
In this paper:

- We introduce a new technique to construct algebraic geometric SSS.
- We define a new AG notion (torsion limit) and prove bounds for it.
- As a result we get (case \(d = 2 \)):

Theorem

For \(q = 8, 9 \) and all \(q \geq 16 \) there is an infinite family of \((n, t, 2, n - t)\)-arithmetic SSS for \(\mathbb{F}_q^k \) over \(\mathbb{F}_q \) with \(t \)-uniformity where \(n \) is unbounded, \(k = \Omega(n) \) and \(t = \Omega(n) \).

CC06 could only achieve this for \(q \) square, \(q > 49 \). Furthermore, in many cases, we achieve a larger rate \(t/n \).
Let F an algebraic function field over \mathbb{F}_q.

Definition

For G a divisor of F, P_1, \ldots, P_n, Q_1, \ldots, Q_k rational places of F, $P_i, Q_j \notin \text{supp}G$, denote $D := \sum P_i + \sum Q_j$ and consider the AG-code:

$$C(G; D) = \{(f(Q_1), \ldots, f(Q_k), f(P_1), \ldots, f(P_n)) \mid f \in \mathcal{L}(G)\}$$
Let F an algebraic function field over \mathbb{F}_q.

Definition

For G a divisor of F, $P_1, \ldots, P_n, Q_1, \ldots, Q_k$ rational places of F, $P_i, Q_j \notin \text{supp} G$, denote $D := \sum P_i + \sum Q_j$ and consider the AG-code:

$$C(G; D) = \{(f(Q_1), \ldots, f(Q_k), f(P_1), \ldots, f(P_n)) \mid f \in \mathcal{L}(G)\}$$

Remark

If $C = C(G; D)$, then $C^*d \subseteq C(dG; D)$.
For $A \subset \{1, \ldots, n\}$ with $A \neq \emptyset$, define $P_A = \sum_{j \in A} P_j \in \text{Div}(F)$. Let $K \in \text{Div}(F)$ be a canonical divisor.

Theorem

If the “Riemann-Roch system of equations”

$$\{ \ell(dX - D + P_A + Q) = 0, \ell(K - X + P_A + Q) = 0 \}_{A \subset \mathcal{I}^*, |A| = t}$$

has solution $X := G$, then $C(G; D)$ is an $(n, t, d, n-t)$-arithmetic secret sharing scheme for \mathbb{F}_q^k over \mathbb{F}_q (with uniformity).
For $A \subset \{1, \ldots, n\}$ with $A \neq \emptyset$, define $P_A = \sum_{j \in A} P_j \in \text{Div}(F)$. Let $K \in \text{Div}(F)$ be a canonical divisor.

Theorem

If the “Riemann-Roch system of equations”

$$\{\ell(dX - D + P_A + Q) = 0, \ell(K - X + P_A + Q) = 0\}_{A \subset \mathcal{I}^*, |A| = t}$$

has solution $X := G$, then $C(G; D)$ is an $(n, t, d, n - t)$-arithmetic secret sharing scheme for \mathbb{F}_q^k over \mathbb{F}_q (with uniformity).

In CC06: Strong conditions on F (large number rational places) \Rightarrow **any** divisor of a certain degree is a solution.
Let h be the class number of F, A_r number of effective divisors of degree r.

Theorem

Consider the system:

$$\left\{ \ell(d_iX + Y_i) = 0 \right\}_{i=1}^L.$$

If for some $s \in \mathbb{Z}$,

$$h > \sum_{i=1}^L A_{r_i(s)} \cdot |J_F[d_i]|,$$

where $r_i(s) = d_is + \deg Y_i$, $i = 1, \ldots, L$, then the system has a solution G of degree s.
Bounds on A_r/h were obtained in several works in coding theory.

$|\mathcal{J}_F[d]|$ not previously studied in that context (as far as we know).

This is because the role of $|\mathcal{J}_F[d]|$ is linked to the requirements on C^*d.
The Torsion Limit

For F/\mathbb{F}_q a function field, and $r \in \mathbb{Z}_{>1}$ we consider the r-torsion point group in \mathcal{J}_F, i.e., $\mathcal{J}_F[r] := \{[D] \in \mathcal{J}_F : r[D] = 0\}$.

Definition

For a family $\mathcal{F} = \{F/\mathbb{F}_q\}$ of function fields with $g(F) \to \infty$, we define its r-torsion limit:

$$
J_r(\mathcal{F}) := \liminf_{F \in \mathcal{F}} \frac{\log_q |\mathcal{J}_F[r]|}{g(F)}.
$$
For F/\mathbb{F}_q a function field, and $r \in \mathbb{Z}_{>1}$ we consider the r-torsion point group in \mathcal{J}_F, i.e., $\mathcal{J}_F[r] := \{ [D] \in \mathcal{J}_F : r[D] = 0 \}$.

Definition

For a family $\mathcal{F} = \{ F/\mathbb{F}_q \}$ of function fields with $g(F) \to \infty$, we define its r-torsion limit:

$$J_r(\mathcal{F}) := \liminf_{F \in \mathcal{F} \atop g(F) \to \infty} \frac{\log_q |\mathcal{J}_F[r]|}{g(F)}.$$

Definition

For a prime power q and a real $a \in (0, A(q)]$, let \mathcal{F} the (non-empty) set of families $\mathcal{F} = \{ F/\mathbb{F}_q \}$ with $g(F) \to \infty$ and

$$\lim \frac{|\mathbb{P}^{(1)}(F)|}{g(F)} \geq a.$$ Then define, for $r \in \mathbb{Z}_{>1}$,

$$J_r(q, a) := \liminf_{\mathcal{F} \in \mathcal{F}} J_r(\mathcal{F}).$$
Fix \mathbb{F}_q and $d \geq 2$. Suppose $A(q) > 1 + J_d(q, A(q))$.

Then there is an infinite family of $(n, t, d, n - t)$-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q with t-uniformity such that

- $n \to \infty$, $k = \Omega(n)$ and $t = \Omega(n)$.
- $C, \ldots, C^{(d-1)}$ have efficient t-error correction for the secret.
Let \mathbb{F}_q be a finite field and let $r > 1$ be a prime.

(i) If $r \mid (q - 1)$, then $J_r(q, A(q)) \leq \frac{2}{\log r q}$.

(ii) If $r \nmid (q - 1)$, then $J_r(q, A(q)) \leq \frac{1}{\log r q}$

(iii) If q is square and $r \mid q$, then $J_r(q, \sqrt{q} - 1) \leq \frac{1}{(\sqrt{q} + 1) \log r q}$.
Conclusions

- Arithmetic SSS are an important abstract primitive in IT secure cryptography.
- Asymptotics have become important: recent applications in two party cryptography.
Conclusions

- Arithmetic SSS are an important abstract primitive in IT secure cryptography.
- Asymptotics have become important: recent applications in two party cryptography.
- Algebraic geometry seem only handle to obtain good asymptotic constructions.
- Probabilistic methods do not seem to work! (as opposed to code theory).

Results: More general definitions and framework, new methodology to construct AG-SSS, existential results not known to be possible before, new notion of torsion limit and upper bounds for it.
Arithmetic SSS are an important abstract primitive in IT secure cryptography.

Asymptotics have become important: recent applications in two party cryptography.

Algebraic geometry seem only handle to obtain good asymptotic constructions.

Probabilistic methods do not seem to work! (as opposed to code theory).

Results: More general definitions and framework, new methodology to construct AG-SSS, existential results not known to be possible before, new notion of torsion limit and upper bounds for it.