
1

A New Variant of PMAC:

Beyond the Birthday Bound

Kan Yasuda (NTT, Japan)

CRYPTO 2011

Aug. 17

2

Summary

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

3

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

4

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

5

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

6

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

 4. highly efficient (construction details)

7

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

 4. highly efficient (construction details)

 5. Some possible refinements

8

Introduction

 MAC (Message Authentication Code)

 Symmetric-key primitive

 Input: a secret key and (possibly large) data

 Output: a fixed-length value (called tag)

 Used for integrity check of data

data (message)

secret key

Tag (64-bit, 128-bit, etc.)

9

4 ways to make a MAC

 1. design from scratch (dedicated MAC)

 2. use a cryptographic hash function (e.g.,

HMAC)

 3. use a universal hash function

 4. use a blockcipher (e.g., CMAC, PMAC)

10

4 ways to make a MAC

 1. design from scratch (dedicated MAC)

 2. use a cryptographic hash function (e.g.,

HMAC)

 3. use a universal hash function

 4. use a blockcipher (e.g., CMAC, PMAC)

We focus on

 blockcipher-based construction

11

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

 4. highly efficient (construction details)

 5. Some possible refinements

12

Blockcipher-based MACs

(2 types of iteration)
data

CBC

data data data

PMAC

data data

mask mask mask

Mask needs to be updated at each iteration

13

CBC vs. PMAC

CBC PMAC

Sequential Parallelizable

Only XOR Requires mask

update and XOR

14

We choose PMAC, because . . .

 PMAC seems to have a structure

easier to analyze (for security proofs)

 In fact, some of our proof techniques

are not applicable to CBC iteration

15

Intuition behind the choice
data

data data data

data data

mask mask mask

$ $ $ $

$ $ $ $

Order of execution does matter

Can be executed in any order

Easier to manipulate events and to evaluate probabilities

16

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

 4. highly efficient (construction details)

 5. Some possible refinements

17

MAC security

 Unforgeability

 Adversary (without knowing the key) should

not be able to produce a valid tag for a new

message

 Pseudo-random

 Randomness implies unforgeability

 If a MAC is a secure PRF (pseudo-random

function), then it is also a secure MAC.

18

MAC security

 Unforgeability

 Adversary (without knowing the key) should

not be able to produce a valid tag for a new

message

 Pseudo-random

 Randomness implies unforgeability

 If a MAC is a secure PRF (pseudo-random

function), then it is also a secure MAC.

We follow this direction

19

Birthday problems

 Ordinary MACs usually provide security only half

the block size (n bit) of the underlying cipher

 For n-bit cipher, only 2^(n/ 2) security

 For n = 64, 2^32 blocks = 32GBytes

 64-bit blockciphers? Triple-DES, HIGHT,

PRESENT, LED, . . .

n-bit security

0.5n-bit security

20

2 diffenent birthday problems

exist for blockcipher-based MACs

 Birthday attacks on iterated MACs
 Existential forgery is possible on any iterated

MACs after 2^(n/2) queries (n the state size)

 For CBC-type MACs, even universal forgery is
possible

 PRP – PRF switching lemma
 PRP – pseudo-random permutation

 A (pseudo-random) permutation can be
considered as a function only up to 2^(n/2)
queries

21

Our security result

 Our construction achieves 2^(2n/3)

security

 For n = 64, 2^42.7 blocks = 51TBytes

 Our MAC is a secure PRF based on the

assumption that the underlying

blockcipher is a secure PRP

 We avoid using PRP-PRF switching lemma

22

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

 4. highly efficient (construction details)

 5. Some possible refinements

23

ISO 9797

 (The only) previous construction that

achieves security beyond the

birthday bound

 Achieves (Slightly worse than our)

2^(2n/3) security

 Rate-1/2 construction, twice as slow (as

CMAC, PMAC)

24

ISO 9797 – sum of two CBC MACs

 Requires 2 encryptions to process a block

 Block i Block i+1 Block i+2

Block i Block i+1 Block i+2 Different keys

25

Our solution – basic idea

We want rate-1 construction;

 only 1 encryption per block . . .

26

Our solution – basic idea

We want rate-1 construction,

 only 1 encryption per block . . .

Double everything but blockcipher calls

27

Original PMAC

data data data

mask mask mask

tag

finalization

28

Doubling the masking

data data data

mask0 mask0 mask0

tag

finalization

mask1 mask1 mask1

29

Doubling the state

data data data

mask0 mask0 mask0

tag

finalization

mask1 mask1 mask1

mult. by 2 mult. by 2

Errata: These finite-field mult. by 2 are written wrongly

 in the proceddings Fig. 1 page 601

30

mult. by 2 mult. by 2

Doubling the finalization

data data data

mask0 mask0 mask0

tag

finalization

mask1 mask1 mask1

31

mult. by 2 mult. by 2

Our construction

data data data

mask0 mask0 mask0

tag

finalization

mask1 mask1 mask1

32

More details

 Mask generation and update
 mask0 is encryption of 0, mask 1 is encryption

of 1

 mask0 is updated via mult. by 2

 mask1 is updated via mult. by 4

 Uses 3 keys
 Use different keys for (each of the) finalization

 Finite-field mult. by 2
 Can be implemented 1-bit shit + 1 conditional

XOR

33

Outline

 We present a new MAC which is PMAC-like,

highly secure, and highly efficient.

 1. MACs (quick review)

 2. PMAC (blockcipher-based MAC)

 3. highly secure (beyond birthday bound)

 4. highly efficient (construction details)

 5. Some possible refinements

34

Open problem: 1-key construction

mult. by 2 mult. by 2

data data data

mask0 mask0 mask0

tag

finalization

mask1 mask1 mask1
These 2 keys can be made the same

by tweaking here (e.g., mult. by 2)

. . . But still a 2-key construction

35

Open problem: Full 2^n security

 Tripling everything instead of doubling

 Possibly 2^(3n/4) security, but not 2^n

 4 times, 5 times, . . . would result in 2^(4n/5),

2^(5n/6) security (at best)

 May call them still rate-1, but more and more

inefficient

 The 2^(2n/3) bound may not be tight

 No attacks (of this complexity) known

 The proofs may be improved

36

Thank you

