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Summary 

 We present a new MAC which is PMAC-like, 

highly secure, and highly efficient. 
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Introduction 

 MAC (Message Authentication Code) 

 Symmetric-key primitive 

 Input: a secret key and (possibly large) data 

 Output: a fixed-length value (called tag) 

 Used for integrity check of data 

data (message) 

secret key 

Tag (64-bit, 128-bit, etc.) 
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4 ways to make a MAC 

 1. design from scratch (dedicated MAC) 

 2. use a cryptographic hash function (e.g., 

HMAC) 

 3. use a universal hash function 

 4. use a blockcipher (e.g., CMAC, PMAC) 
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4 ways to make a MAC 

 1. design from scratch (dedicated MAC) 

 2. use a cryptographic hash function (e.g., 

HMAC) 

 3. use a universal hash function 

 4. use a blockcipher (e.g., CMAC, PMAC) 

We focus on 

  blockcipher-based construction 
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Blockcipher-based MACs 

(2 types of iteration) 
data 

CBC 

data data data 

PMAC 

data data 

mask mask mask 

Mask needs to be updated at each iteration 
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CBC vs. PMAC 

CBC PMAC 

Sequential Parallelizable 

Only XOR Requires mask 

update and XOR 
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We choose PMAC, because . . . 

 PMAC seems to have a structure 

easier to analyze (for security proofs) 

 

 In fact, some of our proof techniques 

are not applicable to CBC iteration 
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Intuition behind the choice 
data 

data data data 

data data 

mask mask mask 

$ $ $ $ 

$ $ $ $ 

Order of execution does matter 

Can be executed in any order 

Easier to manipulate events and to evaluate probabilities 
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MAC security 

 Unforgeability 

 Adversary (without knowing the key) should 

not be able to produce a valid tag for a new 

message 

 Pseudo-random 

 Randomness implies unforgeability 

 If a MAC is a secure PRF (pseudo-random 

function), then it is also a secure MAC. 
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 Adversary (without knowing the key) should 

not be able to produce a valid tag for a new 

message 

 Pseudo-random 

 Randomness implies unforgeability 

 If a MAC is a secure PRF (pseudo-random 

function), then it is also a secure MAC. 

We follow this direction 
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Birthday problems 

 Ordinary MACs usually provide security only half 

the block size (n bit) of the underlying cipher 

 For n-bit cipher, only 2^(n/ 2) security 

 

 For n = 64, 2^32 blocks = 32GBytes 

 64-bit blockciphers?  Triple-DES, HIGHT, 

PRESENT, LED, . . . 

n-bit security 

0.5n-bit security 
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2 diffenent birthday problems 

exist for blockcipher-based MACs 

 Birthday attacks on iterated MACs 
 Existential forgery is possible on any iterated 

MACs after 2^(n/2) queries (n the state size) 

 For CBC-type MACs, even universal forgery is 
possible 

 PRP – PRF switching lemma 
 PRP – pseudo-random permutation 

 A (pseudo-random) permutation can be 
considered as a function only up to 2^(n/2) 
queries 
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Our security result 

 Our construction achieves 2^(2n/3) 

security 

 For n = 64, 2^42.7 blocks = 51TBytes 

 

 Our MAC is a secure PRF based on the 

assumption that the underlying 

blockcipher is a secure PRP 

 We avoid using PRP-PRF switching lemma 
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ISO 9797 

 (The only) previous construction that 

achieves security beyond the 

birthday bound 

 Achieves (Slightly worse than our) 

2^(2n/3) security 

 Rate-1/2 construction, twice as slow (as 

CMAC, PMAC) 
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ISO 9797 – sum of two CBC MACs 

 Requires 2 encryptions to process a block 

 Block i Block i+1 Block i+2 

Block i Block i+1 Block i+2 Different keys 



25 

Our solution – basic idea 

We want rate-1 construction; 

 only 1 encryption per block . . . 
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Our solution – basic idea 

We want rate-1 construction, 

 only 1 encryption per block . . . 

Double everything but blockcipher calls 
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Original PMAC 

data data data 

mask mask mask 

tag 

finalization 
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Doubling the masking 

data data data 

mask0 mask0 mask0 

tag 

finalization 

mask1 mask1 mask1 
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Doubling the state 

data data data 

mask0 mask0 mask0 

tag 

finalization 

mask1 mask1 mask1 

mult. by 2 mult. by 2 

Errata: These finite-field mult. by 2 are written wrongly 

                                           in the proceddings Fig. 1 page 601 
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mult. by 2 mult. by 2 

Doubling the finalization 

data data data 

mask0 mask0 mask0 

tag 

finalization 

mask1 mask1 mask1 
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mult. by 2 mult. by 2 

Our construction 

data data data 

mask0 mask0 mask0 

tag 

finalization 

mask1 mask1 mask1 
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More details 

 Mask generation and update 
 mask0 is encryption of 0, mask 1 is encryption 

of 1 

 mask0 is updated via mult. by 2 

 mask1 is updated via mult. by 4 

 Uses 3 keys 
 Use different keys for (each of the) finalization 

 Finite-field mult. by 2 
 Can be implemented 1-bit shit + 1 conditional 

XOR 
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Open problem: 1-key construction 

mult. by 2 mult. by 2 

data data data 

mask0 mask0 mask0 

tag 

finalization 

mask1 mask1 mask1 
These 2 keys can be made the same 

by tweaking here (e.g., mult. by 2) 

. . . But still a 2-key construction 
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Open problem: Full 2^n security 

 Tripling everything instead of doubling 

 Possibly 2^(3n/4) security, but not 2^n 

 4 times, 5 times, . . . would result in 2^(4n/5), 

2^(5n/6) security (at best) 

 May call them still rate-1, but more and more 

inefficient 

 The 2^(2n/3) bound may not be tight 

 No attacks (of this complexity) known 

 The proofs may be improved 
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Thank you 


