Position-Based Quantum Cryptography: Impossibility and Constructions

Harry Buhrman, Christian Schaffner
Serge Fehr
Nishanth Chandran, Ran Gelles
Rafail Ostrovsky
Vipul Goyal

CRYPTO 2011
Wednesday, August 17, 2011
http://arxiv.org/abs/1009.2490
Position-Based Cryptography

- Typically, cryptographic players use **credentials** such as
 - secret information
 - authenticated information
 - biometric features
- can the **geographical position** of a player be used as its **only** credential?
Position-Based Tasks

- examples of desirable primitives:
 - position-based **secret communication** (e.g. between military bases)
 - position-based **authentication** (i.e. person at specific location can authenticate messages)
 - position-based **access control** to resources
Basic task: Position Verification

- Prover wants to convince verifiers that she is at a particular fixed position

- Assumptions:
 - Communication at speed of light
 - Instantaneous computation
 - Verifiers can coordinate

- No coalition of (fake) provers, i.e. not at the claimed position, can convince verifiers
Position Verification: Classical Scheme

Verifier1

Prover

Verifier2

\[f(x, y) = (a, b) \]

\[f(x, y) = (a, b) \]
Position verification is classically impossible!

- Using the same resources as the honest prover, colluding adversaries can reproduce a consistent view.
- Computational assumptions do not help.
intuitively: security should follow from the quantum no cloning principle
Our Results

- general no-go theorem:
 Position verification (and position-based encryption, authentication etc.) is impossible also in the quantum setting

- limited possibility result:
 Position verification (and also encryption etc.) is possible in the quantum setting assuming that the adversaries hold no pre-shared entanglement.
Quick History of Position-Based Q Crypto

- 2003/2006: [Kent Munro Spiller, HP Labs]: quantum tagging
- March 2010: [Malaney, arxiv]: quantum scheme for position verification, no formal proof
- May 2010: [Chandran Fehr Gelles Goyal Ostrovsky, arxiv]: quantum scheme for position verification, rigorous proof, but implicitly assuming no-preshared entanglement
- Aug 2010 / 2003: [Kent Munro Spiller, arxiv]: insecurity of proposed schemes, new (secure?) schemes
- Sep 2010: [Lau Lo, arxiv]: extension of Kent et al.’s attack, proposal of new (secure?) schemes
Quick History of Position-Based Q Crypto

- May 2010: [Chandran Fehr Gelles Goyal Ostrovsky, arxiv]: quantum scheme for position verification, rigorous proof, but implicitly assuming no-preshared entanglement
- Aug 2010 / 2003: [Kent Munro Spiller, arxiv]: insecurity of proposed schemes, new (secure?) schemes
- Sep 2010: [Lau Lo, arxiv]: extension of Kent et al.’s attack, proposal of new (secure?) schemes
- Sep 2010: [this paper, arxiv]: impossibility of position-based quantum crypto
- Jan 2011: [Beigi König, arxiv]: improvement of entanglement consumption
- yesterday’s Rump Session: the Garden-Hose Model
Quantum Teleportation

- does not contradict relativity theory
- teleported state can only be recovered when the classical information arrives

Position-Based QC: Teleportation Attack

[Kent Munro Spiller 03/10, Lau Lo 10]

\[b = f(\sigma, b') \]

if \(\sigma \in \{ \text{id}, Z \} \) : \(\text{unlock} \Rightarrow b = b' \)

if \(\sigma \in \{ X, XZ \} \) : \(\text{unlock} \Rightarrow b = -b' \)
Instantaneous Non-Local Q Computation

- attack on general position-verification scheme
- clever way of back-and-forth teleportation, based on ideas by [Vaidman 03]
- one simultaneous round of communication
Impossibility of Position-Based Q Crypto

- attack works also against multi-round schemes
- dishonest provers can perfectly simulate the honest prover’s actions
Theorem: success probability of attack is at most 0.85 in the no-preshared entanglement (No-PE) model.

- Use (sequential) repetition to amplify gap between honest and dishonest players.
Position-Based Authentication and QKD

- Verifiers accept message only if sent from prover’s position
- Weak authentication of one-bit messages:
 - If message bit = 0: perform Position Verification (PV)
 - If message bit = 1: PV with prob 1-q, send ⊥ otherwise
- Strong authentication by encoding message into balanced repetition-code (0 → 00...0011...1, 1 → 11...1100...0)
- Verifiers check statistics of ⊥ and success of PV
- Using authentication scheme, verifiers can also perform position-based quantum key distribution
Summary

- plain model: classically and **quantumly impossible** to use the prover’s location as his sole credential
- basic scheme for **secure positioning** if adversaries have no pre-shared entanglement
- more advanced schemes allow **message authentication and key distribution**
- can be generalized to more dimensions
Open Questions

- no-go theorem vs. secure schemes
- how much entanglement is required to break the scheme?
- security in the bounded-quantum-storage model?
- many interesting connections to entropic uncertainty relations, classical complexity theory (via the Garden-Hose Model), non-local games