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Algorithm + Device = Measurements!

But how to make the most of those measurements?
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WHAT IS A SIDE-CHANNEL DISTINGUISHER?
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WHAT MAKES A GOOD DISTINGUISHER?

THE USUAL APPROACH. . .
Desirable metric: “# of trace measurements required for key recovery”

Not like-for-like: Practical outcomes highly sensitive to estimator
choice

Not computable: Sampling distributions (usually) unknown

OUR CONTRIBUTION

‘True’ distinguishing vectors can be directly computed for well-defined
hypothetical scenarios

Theoretic advantages 6=⇒ practical advantages (unequal estimation costs)
BUT

Certain characteristics have a strong bearing on likely practical outcomes

What features of the theoretic distinguishing vectors most contribute to its
estimatability?
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‘A FAIR EVALUATION FRAMEWORK’
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I Distinguisher must isolate key in theory to stand a
chance in practice
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I The smaller the margin, the fewer the traces needed
for estimation!
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I An attack which needs to ‘see more inputs’ will
inevitably need more traces
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THE DISTINGUISHERS AT A GLANCE. . .

MIA: MUTUAL INFORMATION

Defined as: D(k) = I(Lk∗ + ε;Mk) = H(Lk∗ + ε)− H(Lk∗ + ε|Mk), where
H is the differential entropy: H(X) = −

∫
x∈X pX(x)log2(pX(x))

Functional of the distribution—estimation problematic
DPA outcomes extremely sensitive to estimator choice; no ‘ideal’ exists
No general results for the sampling distributions

CPA: PEARSON’S CORRELATION COEFFICIENT

Defined as: D(k) = ρ(Lk∗ + ε,Mk) =
Cov(Lk∗+ε,Mk)√

Var(Lk∗+ε)
√

Var(Mk)

Function of distributional moments—estimation simple
Sample correlation coefficient suits a broad range of assumptions
Lots of ‘nice’ results for its sampling distribution
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WHY ‘MUTUAL INFORMATION ANALYSIS’?

Proposed (Gierlichs et al., 2008) as an enhancement to correlation DPA:

Optimal in an information theoretic sense – quantifies total dependence

Generic – should work even without a good power model

However. . . correlation DPA frequently performs better in empirical
comparisons

What can we learn from a theoretic evaluation?

Distinguisher Power model Abbreviation

Correlation DPA Hamming weight CPA(HW)

Mutual Information Analysis
Hamming weight MIA(HW)
Identity MIA(ID)
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NOISE-FREE HAMMING WEIGHT LEAKAGE
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CPA(HW) MIA(HW) MIA(ID)

Correct key ranking 1 1 1
Nearest-rival distinguishing score 2.14 5.61 5.08
Average minimum support 6 8 16
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MIA STRANGELY SENSITIVE TO NOISE
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Impact of noise on nearest rival distinguishing score:

Constant for correlation-based distinguisher

Evidence of stochastic resonance for MI-based distinguishers

(Note: no change in required support sizes throughout tested range)
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MIA SHOWS PROMISE IN LESS TYPICAL SCENARIOS. . .

Candidate scenario: Hamming distance leakage from reference state
4(10) = 0100(2)

|CPA(HW)| MIA(HW) MIA(ID)

Correct key ranking 1 1 1
Nearest rival distinguishing score 0.86 3.93 4.57
Average minimum support 34 15 17

Question 1: Do these advantages persist in the presence of noise?

Question 2: If so, can they be translated to practical advantages with
standard estimation procedures?
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. . . STILL LOOKING PROMISING. . .

Question 1: Do the theoretic advantages in the ‘pure signal’ setting persist
in the presence of noise?
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%MIA(HW) Distinguishing score falls below that of CPA(HW)
Hefty penalty in terms of required support size

"MIA(ID) Maintains substantially larger distinguishing scores
Required support size remains constant
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. . . EXPERIMENTAL RESULTS CONFIRM IT!

Question 2: Can the theoretic advantages be translated to practical
advantages with standard estimation procedures?
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%MIA(HW) Least efficient in all but the pure-signal scenario

"MIA(ID) Comparable to CPA(HW) when SNR ≤ 0.5, but
more efficient thereafter

C. WHITNALL (UNIVERSITY OF BRISTOL) EVALUATING MIA CRYPTO 2011 13 / 1



BAD NEWS FOR DUAL-RAIL PRECHARGE LOGIC?

Unless output capacitances are perfectly balanced then some
data-dependent signal will still leak
Power consumption when not perfectly balanced can be likened to the
HD from a constant reference state:

Reference state←→ Bit-wise difference in the wire capacitances

Confirmed by experimental attacks in Gierlichs et al., 2008

MIA can be used to thwart countermeasures which resist correlation DPA!
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IN CONCLUSION

The problem: Empirical studies don’t enable concrete, like-for-like
comparisons between distinguishers

Our solution: A theoretic evaluation which bypasses the practical problems
of estimation

Implications for MI-based distinguishers:
There are scenarios where MI has a substantial theoretic advantage
(e.g. Hamming distance leakage, DRP logic)

Such advantages can be translated into practical advantages

The (standardised) MI distinguishing vector exhibits a type of
stochastic resonance as noise levels vary

Whitnall, C and Oswald, E: A Fair Evaluation Framework for Comparing
Side-Channel Distinguishers. Journal of Cryptographic Engineering, 2011.
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THANK YOU FOR LISTENING!

Any questions?
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