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Algorithm + Device = Measurements!

But how to make the most of those measurements?
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WHAT MAKES A GOOD DISTINGUISHER?

THE USUAL APPROACH. ..

Desirable metric: “# of trace measurements required for key recovery”

m Not like-for-like: Practical outcomes highly sensitive to estimator
choice

m Not computable: Sampling distributions (usually) unknown
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OUR CONTRIBUTION

“True’ distinguishing vectors can be directly computed for well-defined
hypothetical scenarios

Theoretic advantages 7= practical advantages (unequal estimation costs)
BUT
Certain characteristics have a strong bearing on likely practical outcomes

What features of the theoretic distinguishing vectors most contribute to its
estimatability?
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.. Correct key ranking in the theoretic vector

» Distinguisher must isolate key in theory to stand a
chance in practice
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Correct key ranking in the theoretic vector

» Distinguisher must isolate key in theory to stand a

# standard deviations

chance in practice
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Nearest-rival distinguishing score — # s.d. between
correct key value and highest ranked alternative
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» The smaller the margin, the fewer the traces needed

a4 ’ for estimation!

Average minimum support — how large an input

08

£ support does the distinguisher need?
s » An attack which needs to ‘see more inputs’ will
O I inevitably need more traces



THE DISTINGUISHERS AT A GLANCE...

MIA: MUTUAL INFORMATION

m Defined as: D(k) = I(Ly + e; M) = H(Ly» + ) — H(Ly- + €|My), where
H is the differential entropy: H(X) = — [ _ px(x)log, (px(x))
B Functional of the distribution—estimation problematic

m DPA outcomes extremely sensitive to estimator choice; no ‘ideal’ exists
m No general results for the sampling distributions
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CPA: PEARSON’S CORRELATION COEFFICIENT

m Defined as: D(k) = p(Li- + &, My) = \/Va(:?;’:f::)”i%:im)

m Function of distributional moments—estimation simple

m Sample correlation coefficient suits a broad range of assumptions
m Lots of ‘nice’ results for its sampling distribution



WHY ‘MUTUAL INFORMATION ANALYSIS’?

Proposed (Gierlichs et al., 2008) as an enhancement to correlation DPA:
m Optimal in an information theoretic sense — quantifies total dependence
m Generic — should work even without a good power model

m However...correlation DPA frequently performs better in empirical
comparisons
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Proposed (Gierlichs et al., 2008) as an enhancement to correlation DPA:
m Optimal in an information theoretic sense — quantifies total dependence
m Generic — should work even without a good power model

m However...correlation DPA frequently performs better in empirical
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What can we learn from a theoretic evaluation?

Distinguisher Power model Abbreviation
Correlation DPA Hamming weight CPA(HW)
Hamming weight MIAHW)

Mutual Information Analysis Identity MIA(ID)



NOISE-FREE HAMMING WEIGHT LEAKAGE

Correlation attack against the first DES S—-Box Mutual information attack against the first DES S-Box
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® Truekey O Nearestrival ® Truekey O Nearestrival
CPA(HW) MIAHW) MIA(ID)
Correct key ranking 1 1 1
Nearest-rival distinguishing score 2.14 5.61 5.08
Average minimum support 6 8 16




MIA STRANGELY SENSITIVE TO NOISE

Nearest-rival distinguishing score
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Impact of noise on nearest rival distinguishing score:
m Constant for correlation-based distinguisher
m Evidence of stochastic resonance for MI-based distinguishers

(Note: no change in required support sizes throughout tested range)



MIA SHOWS PROMISE IN LESS TYPICAL SCENARIOS. ..

Candidate scenario: Hamming distance leakage from reference state
4(10) - 0100(2)

ICPA(HW)I MIAHW) MIA(ID)

Correct key ranking 1 1 1
Nearest rival distinguishing score 0.86 3.93 4.57
Average minimum support 34 15 17

m Question 1: Do these advantages persist in the presence of noise?

m Question 2: If so, can they be translated to practical advantages with
standard estimation procedures?



...STILL LOOKING PROMISING...

Question 1: Do the theoretic advantages in the ‘pure signal’ setting persist
in the presence of noise?

Nearest-rival distinguishing score Average minimum support

Distinguishing score
Input support size

o S ©—0O

0 10

0125 05 2 8 2 128 0125 05 2 8 2 128
Signal-to—noise ratio Signal-to—noise ratio
[ —=— MIA(ID) —=F— MIA(HW) —&— CPA(HW)| [ —=— MIA(ID) —=F— MIA(HW) —&— CPA(HW)|

X MIA(HW) = Distinguishing score falls below that of CPA(HW)
m Hefty penalty in terms of required support size

v MIA(ID) = Maintains substantially larger distinguishing scores
m Required support size remains constant



... EXPERIMENTAL RESULTS CONFIRM IT!

Question 2: Can the theoretic advantages be translated to practical
advantages with standard estimation procedures?

Traces required for key recovery: mean

—E— MIA(ID) (16 bins)
—— MIA(HW) (5 bins)
—6— CPA(HW)

Number of traces
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X MIA(HW) Least efficient in all but the pure-signal scenario

¢ MIA(ID)  Comparable to CPA(HW) when SNR < 0.5, but
more efficient thereafter



BAD NEWS FOR DUAL-RAIL PRECHARGE LOGIC?

input_1
Tinput_1 LOgiC output
=output
input_2 gate P
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m Unless output capacitances are perfectly balanced then some
data-dependent signal will still leak

m Power consumption when not perfectly balanced can be likened to the
HD from a constant reference state:

m Reference state «— Bit-wise difference in the wire capacitances

m Confirmed by experimental attacks in Gierlichs et al., 2008

MIA can be used to thwart countermeasures which resist correlation DPA!



IN CONCLUSION

The problem: Empirical studies don’t enable concrete, like-for-like
comparisons between distinguishers

Our solution: A theoretic evaluation which bypasses the practical problems
of estimation
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The problem: Empirical studies don’t enable concrete, like-for-like
comparisons between distinguishers

Our solution: A theoretic evaluation which bypasses the practical problems
of estimation

Implications for MI-based distinguishers:

m There are scenarios where MI has a substantial theoretic advantage
(e.g. Hamming distance leakage, DRP logic)

m Such advantages can be translated into practical advantages

m The (standardised) MI distinguishing vector exhibits a type of
stochastic resonance as noise levels vary

Whitnall, C and Oswald, E: A Fair Evaluation Framework for Comparing
Side-Channel Distinguishers. Journal of Cryptographic Engineering, 2011.



THANK YOU FOR LISTENING!

Any questions?



