
Shai Halevi, IBM T.J. Watson

Yehuda Lindell , Bar- Ilan University

Benny Pinkas, Bar - Ilan University

}Can elections, auctions, statistical analysis of
distributed partiesõ data really be carried out
using secure computation?

}Does our model of secure computation really
model the needs of these applications?
ƁAnd Iõm not talking about efficiency concernsé

}In all known protocols, all parties must
interact simultaneously

}Arguably, this is a huge obstacle to adoption
ƁA department wants to carry out a faculty tenure

vote using a secure protocol

¶When do they run the protocol?

ƁA website wishes to securely aggregate statistics
about users

¶Each user gives her information only when connected

}The secure computation model:

}The real - world web model:

}Can secure computation be made non -
simultaneous ?
ƁA natural theoretical question

¶Deepens our understanding of the required
communication model for secure computation

ƁImportant ramifications to practice

¶Especially if this can be done efficiently

} Note: fully homomorphic encryption does not solve the problem

}Parties
ƁOne server ╢

Ɓ▪ parties ╟ȟȣȟ╟▪

}Communication model
ƁEach party interacts with the server exactly once

¶In all of our protocols, this interaction is a single
message from the server to the party and back, but this
is not essential to the model

ƁAt the end, the server obtains the output

}A protocol for this setting is called one pass

}Since the protocol is one - pass, the
computation carried out by ╟░ ȟȣȟ╟▪ and ╢
is of the residual function
 ▌░●░ ȟȣȟ●▪ █●ȟȣȟ●░ȟ●░ ȟȣȟ●▪

}If ╟░ ȟȣȟ╟▪ and ╢ are all corrupted and
colluding, they can compute ▌░●░ ȟȣȟ●▪
and ▌░●ᴂ░ ȟȣȟ●ᴂ▪ and so on, on many inputs
ƁThis is not allowed in classic secure computation

but is inherent to the one - pass model

}A decomposition of a function █●ȟȣȟ●▪ is a
series of ▪ two - input functions █ȟȣ█▪ such
that █▪Ễ█ █ ● ȟ● Ễ●▪ █●ȟȣȟ●▪
ƁIn the one - pass setting ╟░ (and ╢) compute █░ and

pass on the result

ƁIf ╟░ ȟȣȟ╟▪ and ╢ are all corrupted and colluding,
then they learn the value █░Ễ█ █ ● ȟ● Ễ●░

}How much does █░Ễ█ █ ● ȟ● Ễ●░ reveal ?

}If it reveals nothing more than what can be
computed by the residual function
 ▌░●░ ȟȣȟ●▪ █●ȟȣȟ●░ȟ●░ ȟȣȟ●▪
then it is minimal disclosure

}Define █ ● ●, █ ◐ȟ● ◐ȟ● ●ȟ● ,
and so on (all are identity functions), and █▪ █
ƁIf ╟▪ and ╢ are corrupted, all is revealed

}Consider the SUM function and define
 █░◐░ ȟ●░ ◐░ ●░
ƁGiven ◐░ can learn nothing more than sum of first ░

ƁBut this is computable from the residual function

ƁThis is minimal disclosure

}We follow the real/ideal simulation paradigm

}Security is formalized as in the standard
setting with one exception
ƁIf the server is corrupted, then the adversary is

given █░●ȟȣȟ●░ where ╟░ is the last honest party

}A protocol one - pass securely computes a
decomposition if there exists an ideal simulator
such that real and ideal are indistinguishable
ƁThe protocol is optimally private if the decomposition is

minimum disclosure

}Can this notion be achieved?

}If yes,
ƁUnder what assumptions?

ƁAt what cost?

}Binary symmetric functions
ƁDepend only on Hamming weight of input

ƁE.g., AND, OR, PARITY, MAJORITY

}Concise truth table representation
ƁExample: the MAJORITY function over 5 bits

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

In general, this
contains the

function output
on the relevant

weight

