
Verifiable Delegation of Computation 
over Large Datasets 

Siavosh Benabbas 
University of Toronto 

 

Rosario Gennaro 
IBM Research 

 

Yevgeniy Vahlis 
AT&T 

 



Cloud Computing 

Data D 

Code F 

F(D) 

Cloud could be malicious or arbitrarily buggy (same as malicious)! 

Y  F(D) 

Goal: efficiently verify that Y = F(D) 



Cloud Computing 

What is efficient verification? 
Data D Algo F 

Option 1: |F|,|D| are small 
but F(D) takes many steps 

Efficient verification can be linear in |F|, |D| 

For example: D=N=pq, F tries all prime factors until p,q, are found 



Cloud Computing 

What is efficient verification? 
Data D Algo F 

Option 2: |D| is very big 
F(D) is almost linear in |D| 

Linear verification is not good enough 
  Need to be (very) sublinear in |D| 

Plenty of examples: 
 Mining medical records 
 Looking up records (PIR) 
 Making predictions based on trained machine learning models 
 … 



[GGP, CKV, AIK]: Any function can be verifiably delegated in the 
sense of option 2, assuming Fully Homomorphic Encryption 

1.  FHE will become practical any moment  
 In the mean time – can we do VC without it? 
 

2.  [GGP,CKV,AIK] require that a malicious server 
does not learn if it was successful in cheating –  
a significant restriction in practice 



Our Results 

 A new verifiable delegation scheme for polynomials 
 Delegate functions of the form p(x)=c0 + c1 x + c2 x2 + … + cd xd 

 The degree d is arbitrarily large 

 Extends* to multivariate polynomials 

 Adaptive security – the server learns if he was successful 
 
 
 

 Verifiable databases 
 A client can outsource dictionaries (i1, v1)…(in, vn) 

 Make verifiable retrieval queries “Get i” 

 Update queries: “Add (i, v)”, “Remove (i)”, “Update (i, v)” 

• In the line of work on auth. data 
structures and memory checkers 

• Constant communication overhead and 
client work (strict poly-time) 

• “Constant size” assumption 

 Non-crypto applications 
 Keyword search 

 Proofs of retrievability 



Prior Work 

 Long series of works related to this problem 
 Interactive Proofs (B,GMR) 
 Probabilistically Checkable Proofs 

 A computation can be associated with a (potentially very long) proof of correctness 
 Verifying an NP problem can take time indep. of size of statement 
 Verifier queries bits of the proof, assuming the Prover honestly provides them 

 Efficient Arguments/CS Proofs [K,M] 
 Prover commits to the PCP proof 
 Verifier queries bits and verifies  
 Statement must be short “F(x) = y”. Does not deal well with large data. 

 All schemes above are interactive 
 Except for Micali's CS proofs which are made non-interactive in the random oracle model 

 Memory checkers 
[BlumEvansGemmellKannanNaor91,Ajtai02,GemmellNaor03,NaorRothblum05,Dw
orkNaorRothVaik09,...] 
 Different model: server can only retrieve array values. The goal is to minimize the number of 

queries 
 Our solution is not a good memory checker (because the server works hard), but is much 

more efficient in communication and client work 



VERIFIABLE DELEGATION OF 
POLYMOMIALS 



Delegating a polynomial 

 What does it mean to delegate a polynomial? 

p(x)=a0 + a1x+ … + adx
d 

Public key 

Short secret |SK| << d  ̧



Delegating a polynomial 

 What does it mean to delegate a polynomial? 

Compiled 
query 

SK 

Input x  

Response Y 
Certificate C 

Goal: be convinced that Y=P(x), or output “reject” 

Public key 

We only want 
verification 



Our main tool 

 Algebraic PRFs with “trapdoor” efficient algebraic operations 
 

 A pseudorandom function F is a family of functions where 
 FK()  is indistinguishable from a random function R() 

 

 Algebraic PRF:  the range of FK() forms an abelian group 
 F is not a homomorphism! 

 But, given FK(x), FK(y), can compute FK(x)FK(y) 

 A public generator g 

 (This is trivial) 
 



Trapdoor Efficiency 

Given a range (0,…,n) and values (x,x2,...,xn) can compute: 

using the algebraic property 

Trapdoor efficiency: given (K,x) easy to compute Y 
(sublinear in n)  

More generally: other functions of FK(0),…,FK(n) 



Back to VC 
Given coefficients a0,…,ad 

Want to delegate p(x) = a0 + a1x + … + adxd 

Construction 
 Choose random c, compute masking coefficients  
  
 Upload 
       and   
 
 To answer query x the server computes: 
 
 
and returns (C, P(x)) 
 

 

Secrecy of a0,…,ad can 
be achieved 
using(singly) 

homomorphic 
encryption 



Verification 

An honest server sends: 

and     Y = P(x) 

Verifier checks: 

Verifier’s key: PRF key K, masking coefficient c 

Recall that the server is given 

The server has (in the exponent) coefficients of 

To cheat adversary has to find                     ,  W  Y  

If R was random, 
this breaks a secure MAC 



Efficiency 

 If R was random the client would have to remember  
r0 , … , rd 

 Easy to solve using any PRF (in fact, we already did that) 
Now the client only remembers the PRF key 

 Even if a PRF is used, the verifier needs to check efficiently: 
 
 

 Trapdoor efficiency allows exactly that! 
 Given (K, x) can compute R(x) is time sublinear in d 



How? 

 From strong-DDH:                                       is ind. from random 

 

 The PRF is: 
 

 Efficiency: 
 
 
 
 

 Multivariate: 
Generalizes Naor-Reingold 

Need only one exponentiation because: 



How? 

 From DDH 
 Local state size is log(d) 

 We use the Naor-Reingold PRF 
 
 

 Efficiency: 

 

In the paper: 
Polynomials with logarithmic 
number of variables (tradeoff 

degree/# variables) 



To summarize… 

 Based on DDH/Strong-DDH we obtian an adaptively secure 
scheme for delegating high degree polynomials. 

 Can be used for keyword search: 
 To outsource a set of keywords {w1,…,wn} outsource the polynomial 

p(x) = (x-w1) (x-w2)(x-wn) 

 Proofs of retrievability 
 Want to make sure that server keeps a large file F 

 Break F into blocks F0,…,Fn 

 Outsource the polynomial 
P(x) = F0  + F1 x + … + Fn x

n 

 Audit check: verifiably evaluate P(r) for random r 



Open directions 

 Adaptive security for general functions 

 Other efficient constructions for restricted classes of functions 

 Better support for multi-variate polynomials 

Thank you! 



Thank you! 



VERIFIABLE DATABASES! 



Verifiable databases? 

Retrieve location i 

Write to location j 

Insert to location k 

Delete from location l 

Think: SVN with untrusted repository 



Very abridged history 

 Merkle trees 
 Data is in stored as leaves of a tree 

 Client keeps a hash of the root 

 Queries/updates are relatively easy – log n operations each 

 Insertion/deletion is not good – based on amortization 
Too slow over a network for large storages  

 Memory checkers 
 Different model: server is a RAM 

 Efficiency is counted in # of RAM queries 

 We allow server to work hard 

 Authenticated Data Structures 
 Different model: trusted party has a large secret 

 



Folklore solution without updates 

 For every populated location i 
 Give the server MAC(i, data[i]) 

 For all other locations j 
 Upload a MAC of the shortest prefix w of j that does not extend to a 

populated i 

 But, hard to do updates – can’t revoke! 
root 

(i1,d1) (i2,d2) 

? 

? 



Simple Construction 

 Upload                              to authenticate (i,vi) 
 This is a MAC 

 Can update (insecurely):  
 To change value to ui , send  

 Now server can find 

 Insertion is easy 

 Efficient deletion not possible 
 Server always has certificate for (i,vi) 

 
 

 Can we fix it?  
 Need to tie all the elements together without growing client state 

 

 



Composite Order Bilinear Groups 

Subgroup membership assumption: 

G = G1 x G2       |G1|=p      |G2|=q  

Given g in G, g2 in G2 hard to distinguish: 

(Random from G) ≈c (Random from G2) 



Back to verifiable DB 
 Instead of uploading 

 
The client sends                                   for a random wi  
 
The key is a,b,K, and  
 
 

 To update location i to value ui client sends 
and updates w 
 

 Proof of security: the update token is indistinguishable from 
                               
                              .  (Actually, there are CCA issues)  

   The server now sends*  



Back to verifiable DB 

 But server can’t compute                                      ! 

 All he has is 
 

 Upload additional “hints”  
h1 in G, h0 in G2 

 

 To respond to query “i“ the server sends back: 
 
 
 
 

 The client performs the check in the target group of the pairing 



Open directions 

 Adaptive security for general functions is still open 

 Support higher degree polynomials 

 Obtain constructions based on Lattice assumptions 

 Make verifiable DB publicly checkable 

 Extend VDB to support wider range of queries 

Thank you! 


