Verifiable Delegation of Computation
over Large Datasets

Siavosh Benabbas Rosario Gennaro Yevgeniy Vahlis
University of Toronto IBM Research AT&T

Cloud Computing

-

t

Cloud could be malicious or arbitrarily buggy (same as malicious)!

Goal: efficiently verify thatY = F(D)

Cloud Computing

What is efficient verification?

Option 1: |F|,|D| are small
but F(D) takes many steps

\ ((QV\

For example: D=N=pq, F tries all prime factors until p,q, are found

Efficient verification can be linearin |F|, |D|

Cloud Computing

What is efficient verification?

Option 2: [D| is very big \
F(D) is almost linear in |D| mm\

Plenty of examples:
= Mining medical records
= Looking up records (PIR)
= Making predictions based on trained machine learning models

Linear verification is not good enough
=>» Need to be (very) sublinearin |D|

[GGP, CKV, AIK]: Any function can be verifiably delegated in the
sense of option 2, assuming Fully Homomorphic Encryption

1. FHE will become practical any moment
In the mean time — can we do VC without it?

2. [GGP,CKV,AIK] require that a malicious server
does not learn if it was successful in cheating —
a significant restriction in practice

P n Lo
" Non-crypto applications
= Keyword search

" A new verifiable de " Proofs of retrievability

= Delegate functionsR/
= The degree d is arb/

* Inthe line of work on auth. data
structures and memory checkers
Constant communication overhead and

client work (strict poly-time)
* “Constant size” assumption

= Extends™ to multivi
= Adaptive security -

= Verifiable databases
= Aclient can outsource dictionaries (i}, v,)...(I., V,)
= Make verifiable retrieval queries “Get i”
= Update queries: “Add (i, v)”, “Remove (i)”, “Update (i, v)”

Prior Work

Long series of works related to this problem
Interactive Proofs (B,GMR)
Probabilistically Checkable Proofs

= A computation can be associated with a (potentially very long) proof of correctness
= Verifying an NP problem can take time indep. of size of statement
= Verifier queries bits of the proof, assuming the Prover honestly provides them

Efficient Arguments/CS Proofs [K,M]
® Prover commits to the PCP proof
= Verifier queries bits and verifies
= Statement must be short “F(x) = y”. Does not deal well with large data.

All schemes above are interactive
= Except for Micali's CS proofs which are made non-interactive in the random oracle model

Memory checkers
[BlumEvansGemmellKannanNaor91,Ajtai02,GemmellNaor03,NaorRothblum05,Dw
orkNaorRothVaik09,...]

= Different model: server can only retrieve array values. The goal is to minimize the number of
gueries

= Qur solution is not a good memory checker (because the server works hard), but is much
more efficient in communication and client work

VERIFIABLE DELEGATION OF
POLYMOMIALS

Delegating a polynomial

= What does it mean to delegate a polynomial?

Public key

@
¢
p(x)=a, + a,X+ ... + a x4 ‘@b\(i

(T~

Short secret |SK| <<d A

Delegating a polynomial

Public key
= What does it mean to delegate a polynomial?

Compiled
query

We only want
verification

Response Y
Certificate C

Goal: be convinced that Y=P(x), or output “reject”

Our main tool

= Algebraic PRFs with “trapdoor” efficient algebraic operations

= A pseudorandom function F is a family of functions where
= F.(*) isindistinguishable from a random function R(®)

= Algebraic PRF: the range of F (®) forms an abelian group
= Fis nota homomorphism!
= But, given F(x), F(y), can compute F (x)*F(y)
= A public generator ¢
= (This is trivial)

Trapdoor Efficiency

Given a range (0,...,n) and values (X,X?,...,X") can compute:
Y = Fi(0)Fx (1)*F(2)* - Fe ()"
using the algebraic property

Trapdoor efficiency: given (K,x) easy to compute Y
(sublinear in n)

More generally: other functions of F(0),...,F.(n)

Back to VC

Given coefficients a,,...,0,

Want to delegate p(x) = a, + a,x

Secrécy. of ag,...,a4 €can
be achieved
using(singly)

homomorphic
encryption

Construction

" Choose random ¢, compute
g =Fg(0),..,g

" Upload to = 9““°Fk(0), ..,
tg = g "k (d)

= To answer query x the server computes:

and Ag, ey Ag

d
C =ty tE-t* - .- t*

and returns (C, P(x))

Verification

Verifier’s key: PRF key K, masking coefficient c

Recall that the server is given t;, = g©®i*"i

The server has (in the exponent) coefficients of
(cP +R)(x) = (cag + 1) + (cay +r)x + -+ (cay + ry)x?

An honest server sends: 4)
d

C=ty-tX-tX ..t If R was random,

this breaks a secure MAC

Verifier checks: ¢ = gCYJ”RR/),

To cheat adversary has to find gV %) w2y

Efficiency

If R was random the client would have to remember

lo, ., Iy
= Easy to solve using any PRF (in fact, we already did that)
Now the client only remembers the PRF key

Even if a PRF is used, the verifier needs to check efficiently:

C = g cY+R(x)

Trapdoor efficiency allows exactly that!
= Given (K, x) can compute R(x) is time sublinearin d

How?

d

From strong-DDH: g, g~, gxz, ..,g”* isind. from random

X

The PRFis: Fy(x) = g¥

Efficiency: F,(0)- Fp(1)* - ...- FK(d)xd _ gzkfxi
Need only one exponentiation because:

Yhixt = (1 — k%Y /(1 — kx)

X1 q,.X2 Xn
ook, _ kok KL% .k
Multivariate: F(xq,...,x,,) = g0 “2 = n
Generalizes Naor-Reingold

How?

= From DDH

= Local state size is log(d)

= We use the Naor-Reingold PRF .
In the paper:

Fr(x) = gA Polynomials with logarithmic
o number of variables (tradeoff
= Efficiency: degree/# variables)

Fie(0) Fie(1)% « .. Fye (&

2 [lgdl

)

=9

To summarize...

Based on DDH/Strong-DDH we obtian an adaptively secure
scheme for delegating high degree polynomials.

Can be used for keyword search:
= To outsource a set of keywords {w,...,w_} outsource the polynomial
p(x) = (x-wy) (x-w,)*©(x-w,)
Proofs of retrievability
= Want to make sure that server keeps a large file F
= Break F into blocks F,...,F,

= Qutsource the polynomial
P(x)=F,+F, x+ ... +F_Xx"
= Audit check: verifiably evaluate P(r) for random r

Open directions

= Adaptive security for general functions
= QOther efficient constructions for restricted classes of functions
= Better support for multi-variate polynomials

Thank you!

Thank you!

VERIFIABLE DATABASES!

Verifiable databases?

Retrieve location i

Write to location j

Insert to location k

Delete from location |

Think: SVN with untrusted repository

Very abridged history

= Merkle trees
= Datais in stored as leaves of a tree
= Client keeps a hash of the root
= Queries/updates are relatively easy — log n operations each
* |nsertion/deletion is not good — based on amortization
Too slow over a network for large storages
= Memory checkers
= Different model: server is a RAM
= Efficiency is counted in # of RAM queries
= We allow server to work hard

= Authenticated Data Structures
= Different model: trusted party has a large secret

Folklore solution without updates

= For every populated location i
= Give the server MAC(i, datali])

= For all other locations |

= Upload a MAC of the shortest prefix w of j that does not extend to a

populated i
root

= But, hard to do updates — can’t revoke!

(i1,d1) (i2,d2)

Simple Construction

ai+bvi+Fg (i

Upload g) to authenticate (i,v;)

= Thisis a MAC

Can update (insecurely):

= To change value to u;, send gb(ui"”i)

= Now server can find g% gb
Insertion is easy

Efficient deletion not possible
= Server always has certificate for (i,v.)

Can we fix it?

= Need to tie all the elements together without growing client state

Composite Order Bilinear Groups

@

Subgroup membership assumption:
G=G6G;xG, |G,|=p 1G,|=0

Given g)\ G, 0,)\ G, hard to distinguish:

(Random from G) =_ (Random from G,)

Back to verifiable DB

Instead of uploading g@i+bvi+Ffk (1)

ai+bvi+FK(E)gwi

, ¢+ forarandomw,

The client sends g

The key is a,b,K, and w =) w;

o v
The server now sends*g“”b""ﬁFK@ E j

F

To update location i to value u;client sends gf(“i‘vi)g;”i
and updates w

Proof of security: the update token is indistinguishable from

f
b(ui—vp)+r Ww;

91 Y, . (Actually, there are CCA issues)

Back to verifiable DB

But server can’t compute gff+b”i+FK(i)g§Wf !

All he has is ai+bvi+Fg(i) _w;

L 91 92

Upload additional “hints”
hi)\ G, ho)\ G,

st
I

To respond to query “i“ the server sends back:

C =e(t,hy) ne(fpho)

JE!

The client performs the check in the target group of the pairing

Open directions

= Adaptive security for general functions is still open
= Support higher degree polynomials

= QObtain constructions based on Lattice assumptions
= Make verifiable DB publicly checkable

= Extend VDB to support wider range of queries

Thank you!

