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Data in the cloud 
 Data privacy 

 Server wants to learn our data 

 Can we enable the server use 
encrypted data in a meaningful way? 

 Computing on encrypted data 

 Data and computations integrity 

 Server wants to tamper with our data 

 Are answers to queries the same as if 
the data were locally stored? 

 Authenticated data structures 

 Verifiable delegation of 
computation 
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Verifying outsourced computation 

 

 

 

 

 

 

 Conjunctive queries 

 Emails that have the terms “Brown” and “Berkeley” 

 Disjunctive queries 

 Emails that have the terms “thesis” or “publication” 

 All these queries boil down to set operations! 
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Authenticated data structures model 

 Complexity 
 Update at source and server  

 Query at server 

 Verification at client  

 Size of proof 

 Space 

 Security 
 A poly-bounded adversary 

cannot construct invalid proofs 
except with negligible probability 

 Need for computational 
assumptions 

source server C 

D D 

digest(D) query 

answer   
proof + digest(D) 

auth(D) 
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Authenticated sets collection 
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bob 
S1∩S4? 



Queries on sets 
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 m: number of sets (e.g., m = 4) 

 M: sum of sizes of all the sets (e.g., M = 6 + 4 + 3 + 5 = 18) 

 t: number of queried sets (e.g., t = 2) 

 δ: number of elements contained in the answer (e.g., δ = 1) 

 n: the sum of sizes of the queried sets (e.g., n = 6 + 5 = 11) 
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Related work and comparison 
 Optimal proof size and verification time: O(δ) 

 Linear space: O(m + M) 

 Efficient queries and updates 

 Performance comparison for the intersection of c = O(1) sets 
 

space query proof   assumption 

D+04 YP09 m + M n + log m n + log m Generic CR 

M+04 m + M n n Strong RSA 

PT04 mc 1 δ Discrete log 

PTT10 m + M n log3 n +  
mε log m 

δ 
 

Bilinear q-
strong DH 
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Our solution: Sets and polynomials 

 Set X with n elements 

X = {x1,…,xn} 

 Set Z is the intersection of 
X and Y 

 The intersection of X and Y 
is empty, i.e.,                     
X  Y =  

 

 

 Polynomial X(s) in Zp 

X(s) = (s+x1)…(s+xn) 

 Polynomial Z(s) is the GCD 

of X(s) and Y(s) 

 X(s) and Y(s) have GCD 

equal to 1, i.e.,            

gcd(X(s),Y(s)) = 1 

 

 There are polynomials P(s) 

and Q(s) such that 

P(S)X(s) + Q(s)Y(s) = 1 
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Cryptographic tools we use 
 Two multiplicative groups G and T of prime order p 

 g is a generator of G 

 A bilinear map e(.,.) from G to T such that 
 e(ga,gb) = e(g,g)ab for all a,b in Zp 

 e(g,g) generates T 

 Bilinear q-strong Diffie Hellman Assumption 

 Pick a random s in Zp 

 s is the trapdoor 

 Compute gs, gs2, gs3,…, gsq 

 The public key pk are the values gs, gs2, gs3,…, gsq 

 The probability that a PPT Adv can find an a in Zp and output the 
tuple (a,e(g,g)1/(s+a)) is negligible 
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Bilinear-map accumulator  
 G and T of order p have a map e(.,.) 

 X={x,y,z,r} in Zp 

 Base gG, generator of G 

 Secret s  Zp   

 Digest   

 D = g(x+s)(y+s)(z+s)(r+s) 

 Witness for x  

 Wx = g(y+s)(z+s)(r+s)  

 Verification 

 e(D,g) = e(Wx ,g
(x+s))? 

 Security: q-strong Diffie-Hellman assumption  

 [Nguyen (05)] 
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Our construction 
 Compute the accumulation value for every set 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 
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Our construction 
 Compute the accumulation value for every set 

 Build an accumulation tree on top [CCS 2008] 
 O(1/ ε) levels and O(mε) internal degree 

 O(mεlogm) query, O(1) update and O(1) proof  

 The accumulation values protect the integrity of the set elements 

 The accumulation tree protects the integrity of the acc. values  

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 

 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Elements of intersection {c,e} 

 

 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Proof of accumulation values A1 and A2 

 Let Π1 and Π2 be such proofs 
 

 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Proof of accumulation values A1 and A2 

 Let Π1 and Π2 be such proofs 

 Values along the path of the tree 

 Construction of proofs: O(mε logm) 

 Size of proofs: O(1)   
 

 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 

16 



Proof of intersection I = S1∩ S2  
 Subset condition:  

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Subset condition:  

 I  S1 : Subset witness W1 = g(s+a)(s+b)(s+d)(s+f) = gP(s) 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Subset condition:  

 I  S1 : Subset witness W1 = g(s+a)(s+b)(s+d)(s+f) = gP(s) 

 I  S2 : Subset witness W2 = g(s+h)(s+z) = gQ(s) 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Subset condition:  

 I  S1 : Subset witness W1 = g(s+a)(s+b)(s+d)(s+f) = gP(s) 

 I  S2 : Subset witness W2 = g(s+h)(s+z) = gQ(s) 

 Complexity 

 Construction: O(nlog n) (polynomial interpolation) 

 Size: O(1) (2 group elements) 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Completeness condition:  

 (S1 – I) ∩ (S2 – I) is empty 

 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Completeness condition:  

 (S1 – I) ∩ (S2 – I) is empty 

 Recall W1 = gP(s)  and W2 = gQ(s)  

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Proof of intersection I = S1∩ S2  
 Completeness condition:  

 (S1 – I) ∩ (S2 – I) is empty 

 Recall W1 = gP(s)  and W2 = gQ(s)  

 Completeness witness F1 = gA(s)  and F2 = gB(s) 

 A(s)P(s)+B(s)Q(s) = 1  

 Complexity: O(nlog2nlog log n) (ext. Euclidean algorithm) 

a b c d e f c e h z a d f d l m n w 

g(s+a)…(s+f) g(s+c)…(s+z) g(s+a)…(s+f) g(s+d)…(s+w) 

1/ε 
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Recap 
 t sets are intersected and δ is the size of the answer 

 N is the sum of sizes of intersected sets 

element of the proof complexity size 

Intersection elements N δ 
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Recap 
 t sets are intersected and δ is the size of the answer 

 N is the sum of sizes of intersected sets 

element of the proof complexity size 

Intersection elements N δ 

Accumulation values proofs tmεlog m t 
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Recap 
 t sets are intersected and δ is the size of the answer 

 N is the sum of sizes of intersected sets 

element of the proof complexity size 

Intersection elements N δ 

Accumulation values proofs tmεlog m t 

Subset witnesses Nlog N t 
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Recap 
 t sets are intersected and δ is the size of the answer 

 N is the sum of sizes of intersected sets 

element of the proof complexity size 

Intersection elements N δ 

Accumulation values proofs tmεlog m t 

Subset witnesses Nlog N t 

Completeness witnesses Nlog2Nloglog N t 

27 



Recap 
 t sets are intersected and δ is the size of the answer 

 N is the sum of sizes of intersected sets 

element of the proof complexity size 

Intersection elements N δ 

Accumulation values proofs tmεlog m t 

Subset witnesses Nlog N t 

Completeness witnesses Nlog2Nloglog N t 

TOTAL Nlog2Nlog log N 
+ 

tmεlog m 
 

t+δ 
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Recap 
 t sets are intersected and δ is the size of the answer 

 N is the sum of sizes of intersected sets 

element of the proof complexity size 

Intersection elements N δ 

Accumulation values proofs tmεlog m t 

Subset witnesses Nlog N t 

Completeness witnesses Nlog2Nloglog N t 

TOTAL 
almost optimal 

Nlog2Nlog log N 
+ 

tmεlog m 
 

t+δ 
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Size of proof for X ∩ Y in practice  

|X| |Y| |X ∩ Y| KBytes  
[M+ 04] 

KBytes 
this work 

1000 1000 10 3.34 1.73 

1000 100 1 1.68 1.55 

1000 10 0 1.01 1.53 

1000 1 0 0.46 1.53 

10000 10000 100 26.88 3.53 

10000 1000 10 12.15 1.73 

10000 100 1 6.86 1.55 

10000 10 0 3.08 1.53 

100000 100000 1000 263.25 21.53 

100000 10000 100 116.13 3.53 

100000 1000 10 63.18 1.73 

100000 100 1 26.29 1.55 
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Thank you! 
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Application: Supporting timestamps 
 For timestamped documents, use segment tree over the time 

dimension (N timestamps) 

 Search interval covered by O(log N) canonical intervals in the 
segment tree, each corresponding to a set of documents Tj 

 Timestamped keyword search equivalent to O(log N) set intersections 

 T1 ∩ S1 ∩ S2 … ∩ St 

 T2 ∩ S1 ∩ S2 … ∩ St 

 … 
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Verifying outsourced computation 

 Computation “on demand” 

 E.g., Google docs 

 … 

 

 

 

 

 

 Find the pattern comput* in my document 

 Is the result correct? 

 Need for efficient computations 
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First solution: hashing   
 [Devanbu et al., Algorithmica 2004; Yang and Papadias, SIGMOD 2009] 

 Two-level tree structure and hierarchical cryptographic hashing 

 Space: O(m + M), update: O(log m + log n)  

 Intersection of two sets: O(n + log m) proof size and verification time 

 Security: Cryptographic hashing 

 Same complexities: Morselli et al., INFOCOM 2004 
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Second solution: precomputation 
 [Pang and Tan, ICDE 2004] 

 Sign the answer to every possible query 

 Space: O(m2 + M) for a 2-intersection 

 For any possible intersection space is 

 O(2m) 

 Proof size and verification: O(δ) 

 Update: O(m2) for a 2-intersection 

 Security: discrete log 

Signatures of 

S1∩S2  

S1∩S3 

S1∩S4 

S2∩S3 

S2∩S4 

S3∩S4 

...  
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