Merkle Puzzles are Optimal.
Key Exchange:

Security: For every eavesdropping Eve outputting k_{EVE}: $\Pr[k_{EVE} = \text{key}] \approx 0$

Random oracle model: All parties have black-box access to a random function $H: \{0,1\}^n \rightarrow \{0,1\}^n$

Our Result: \forall n-query protocol, \exists $O(n^2)$-query Eve:

$$\Pr[k_{EVE} = \text{key}] \approx 1$$

Merkle '74: \exists n-query protocol (using some puzzles!)

\forall $o(n^2)$-query Eve: $\Pr[k_{EVE} = \text{key}] \approx 0$
Rest of the Talk

- **Part I**: Some History and Merkle’s Protocol

- **Part II**: Our Attack’s Description & Analysis
1974: Merkle’s Key-Exch scheme w/ $\Omega(n^2)$ security (using his puzzles)
Could be formalized in Random Oracle Model

1976: Diffie-Hellman’s Key-Exch scheme (related to discrete log)

1978: Rivest-Shamir-Addleman (related to factoring).

1779: Rabin (exactly based on Factoring!)

During 80’s: What are the minimal assumptions?...
History II – Postmodern Crypto

80’--: One-way function effect.
⇒ : Priv-Key, Dig-Sign, ZK, PRG, PRF, PRP Commitments,...

1989: Impagliazzo-Rudich No “black-box way” to get Key-Exch from OWF
[Sim98, GKMRFV00, GMR01, Fis02, HR04, HH09, KST99, GT00,
GGK03, HK05, LTW05, HHR07, BMG07, BMG08,]

The Main Step in [IR89]:
Break any Key-Exch in Random Oracle Model w/ $O(n^6)$ queries
What left to do?

Left Open in [IR89]:

1) Get weak-Key-Exch from OWF? ✓ [BIG08]

2) Can we get $\Omega(n^6)$ security from RO? ×

Main Thm: ∀ Key-Exch protocol w/ n queries to RO, ∃ ADV asking $O(n^2)$ queries, $\Pr[\text{ADV finds key}] \approx 1$

Cor: Merkle’s scheme [’74] is optimal in OR model. Also [BIG08] is optimal (using exp-hard OWF).
Merkle’s Protocol

Alice
- Pick k_1,\ldots,k_n at rand
- Put k_i in puzzle P_i
- Sent P_1,\ldots,P_n to Bob

Bob
- Take the puzzles from Alice
- Solve a random P_j to get k_j

Main Thm:
\[\forall \text{ an } n\text{-query protocol, } \exists O(n^2)\text{-query Eve s.t.} \]
\[\Pr[k_{EVE} = \text{key}] \approx 1 \]

Puzzles
- Solving a fixed P_i takes time n^2
- Solving a random P_j takes time n

w/ Random Oracle H
\[P_j = H(k_j) \]
Choose k_i from S where $|S| = n^2$

In fact: The Latter is Merkle’s original scheme (not published) and the puzzles above are only “similar” to his actual puzzle scheme published in ‘78...
Rest of the Talk

- **Part I: Some History and Merkle’s Protocol**

- **Part II: Our Attack’s Description & Analysis**
Intro to Attack

- **A**: Alice’s view: (Bob’s view B is similar)
 \[
 \text{rand}_A + \{m_1, m_2, \ldots\} + Q_A \text{ (her oracle queries)}
 \]
 output same keys \Rightarrow A and B are correlated.

- Eve’s view E:
 \[
 \text{rand}_E + \{m_1, m_2, \ldots\} + Q_E \text{ (her oracle queries)}
 \]

- Hope: E contains all the cor between A and B:
 \[
 (A|E), (B|E) \approx \text{indep}
 \]
 then if Eve samples A' conditioned on $E \Rightarrow \Pr[k_A' = k_B] = \Pr[k_A = k_B]$

- One Idea: Ask the whole oracle H! (bad: 2^n queries)

- **Our Attack**: (1) If (*) $Q_A \cap Q_B \subseteq Q_E$ hold \Rightarrow make $(A|E), (B|E) \approx \text{indep}$
 (2) make (*) $Q_A \cap Q_B \subseteq Q_E$ always hold by only $O(n^2)$ queries.

- [IR89]: (1) if (*) \Rightarrow “Cor$(A \mid E, B \mid E) = 0$” or “a pot.func” increases.
 (2) make (*) hold with $O(n^6)$ queries.
The Attack.

Attack’s Algorithm:

Assume that (*) \(Q_A \cap Q_B \subseteq Q_E \) so far.
Conditioned on Eve’s info \(E \) -- and(*):
If \(\exists q \text{ s.t. } \Pr[q \in Q_A \cup Q_B] \geq 1 / (1000n) \Rightarrow \) Eve asks \(q \)

We “will see”:
(Cond on \(E \)): \(\text{dist } A \) and \(\text{dist } B \) become “almost” indep.
\(\Rightarrow \) Eve can find key.

We won’t see but true!:
\(|Q_E| \leq O(n^2) \) (Attack is efficient)
Alice & Bob’s distributions as a Graph

Attack’s Algorithm:

Assume that (*) $Q_A \cap Q_B \subseteq Q_E$ so far.
Conditioned on Eve’s info -- and(*):
If $\exists q$ s.t. $\Pr[q \in Q_A \cup Q_B] \geq 1/(1000n) \Rightarrow$ Eve asks q

- Let S_A be queries asked by A and not by Eve
 - S_B be queries asked by B and not by Eve

Note: If $S_A \cap S_B \neq \emptyset \Rightarrow \Pr[(A, B)] = 0$
Claim: If $S_A \cap S_B = 0 \Rightarrow \Pr[(A, B)] = p_A \cdot p_B$
Now: $\text{dist } (A, B)$ is choosing random edge $(A \sim B)$!
Lemma:

\[A \sim B \text{ iff } S_A \cap S_B = \emptyset \text{ for } |S_A|, |S_B| \leq n \text{ and } \forall q, \quad \Pr_{(A,B) \in E(G)}[q \in S_A \cup S_B] \leq 1/(1000n) \]

Then every vertex in \(G \) is connected to at least 99% of the other side.

Corollary:

sampling a random edge \(A \sim B \) is almost same as choosing \(A \) and \(B \) independently.
Open Questions

- $O(n^2)$ bound for random permutations
 (we improve [IR89]’s $O(n^{12})$ bound to $O(n^4)$)

 can also consider ideal cipher, other “symmetric” primitives.

- Rule out a “classical” const with non-trivial (i.e., $\omega(n)$) security w.r.t. quantum attacks?
 [BrassardSalvail08, BihamIshaiGoren08]

- Find non-black-box constructions of key exchange from one-way functions.
Thank You!