On the Amortized Complexity of Zero-Knowledge Proofs

Ronald Cramer, CWI
Ivan Damgård, Århus University
Classic Zero-Knowledge Protocols

- for, e.g., discrete log or quadratic residuosity, are of form

\[x = f(w) \]
\[e = \{0, 1\} \]
\[a \]
\[z \]

Prover \rightarrow Verifier

Has error probability \(\frac{1}{2} \). Can be amplified to \(2^{-n} \) by iterating \(n \) times. Means proof has size \(O(kn) \) bits, \(k \) size of problem instance.

Some constructions do much better: \(O(k+n) \) bits.

- Schnorr: only for groups of public and prime order.
- Guillou-Quisquater: only for \(q' \)th roots mod a composite, \(q \) a large prime.
- Okamoto-Fujisaki: discrete log in RSA groups, but only under strong RSA assumption and for special moduli.

No better general method known for amplifying error.
Results of this paper

For a large class of problems, we show how to do a zero-knowledge proof for n problem instances simultaneously, such that:
• the complexity per instance proved is $O(n+k)$ bits, and
• the error probability is 2^{-n}.

Construction is unconditional.

Result works for any function f that has certain homomorphic properties (f is a “zero-knowledge friendly” function):
Given x_1,\ldots,x_n, the prover shows he knows w_1,\ldots,w_n such that $f(w_i) = x_i$

Includes
• Discrete log in any group,
• Quadratic residuosity, improves also classic protocol for quadratic non-residues
• Goldwasser-Micali encryptions and similar cryptosystems,
• Integer commitment schemes based on discrete log mod a composite.
Results cont’d

Result extends to show relations between preimages under f, such as multiplicative relations.

We obtain a Σ-protocol, a 3-move honest verifier zero-knowledge protocol.

Honest-verifier zero-knowledge is enough for many applications.

Upcoming work (Cramer, Damgård and Keller): for same class of problems, can get constant-round proof of knowledge that is zero-knowledge against any verifier, proof has same size as ours up to a constant factor, and properties are unconditional.

Related Work
Ishai et al. (STOC 07) have a construction of zero-knowledge protocols from multiparty computation that can give similar complexity as ours for some, but not all problems and requires a complexity assumption.
The Construction, preliminaries

Let e be an n-bit string.

We will need an efficiently computable function: takes e as input and outputs matrix M_e, with integer entries. n columns, m rows. In this example $m=2n-1$.

Other dimensions possible as well. Details on the function later.
Idea of construction
- for discrete logarithm in any group

\[h_1 = g^{w_1}, \ldots, h_n = g^{w_n} \]

How to compute \(z_1, \ldots, z_m \):
Let \(W, R, Z \) be columns vectors containing the \(w_i \)'s, \(r_i \)'s and \(z_i \)'s. Then prover sets \(Z = R + M_e \cdot W \).

How to check \(Z \) is correct:
Let \((t_{i1}, \ldots, t_{in})\) be \(i \)'th row of \(M_e \) must be the case that for \(i = 1 \ldots m \):
\[g^{z_i} = a_i \cdot h_1^{t_{i1}} \cdot \ldots \cdot h_n^{t_{in}} = g^{r_i + w_1 t_{i1} + \ldots + w_n t_{in}} \]
Why is this (honest-verifier) zero-knowledge?

If entries in R chosen uniformly in a large enough interval (compared to entries in $M_e \cdot W$) Z will have essentially uniform entries.

Hence, to simulate, choose z_1, \ldots, z_m and e uniformly, compute M_e, and compute a_1, \ldots, a_m such that

$$g^{zi} = a_i \cdot h_1^{ti_1} \cdot \ldots \cdot h_n^{tin}$$

is true.
Why is this sound?

We show that if, after sending first message, the prover can answer two different challenges e, e', then he could compute $w_1, ..., w_n$, so error probability is 2^{-n}.

Intuition on this: if prover can produce $Z = R + M_e \cdot W$ and $Z' = R + M_{e'} \cdot W$, then he can also compute $Z - Z' = (M_e - M_{e'})W$

So if we can construct M_e from e such that this equation can always be solved for W, we are done.
Construction of M_e from e

Write e as an n-bit column vector

Form the matrix $M_e = \begin{array}{c} e \\
0's \\
0's \
\end{array}$

We will get $m = 2n-1$ rows.

Observation: any difference $M_e - M_{e'}$ is an upper triangular matrix with either +1 or -1 on the diagonal.

Why? focus on "lowest" position where e is different from e'.

This implies $M_e - M_{e'}$ is invertible.
Complexity

- w_1, \ldots, w_n
- $h_i = g^{w_i}, \ldots, h_n = g^{w_n}$
- $a_1 = g^{r_1}, \ldots, a_m = g^{r_m}$
- $e = e_1, \ldots, e_n$
- $Z = R + M_e \cdot W$

Communication

Per instance proved, we have sent m/n group elements and numbers.

$m/n \ll 2$, so same complexity per instance as Schnorr up to a factor 2.

Computation

Entries in M_e are 0, 1, or -1, so computations involving M_e are dominated by the exponentiations. Hence also computation per instance same as Schnorr up to a factor 2.
In general..

The homomorphic property of the function $w \rightarrow g^w$ is what makes this work. Many other functions are fine as well, see paper for general framework.

Examples:
Not limited to one base, can do proofs of knowledge for $(w,s) \rightarrow g^{wh^s}$.

Covers several known cryptosystems (Goldwasser-Micali, Groth, Damgård-Geisler-Krøigaard)

- And commitment schemes for committing to integers (Fujisaki Okamoto)
More Examples

The function \(w \rightarrow w^2 \mod N \)

Here special purpose construction of \(M_e \) makes it even more efficient:

Consider that n-bit string \(e \) can be thought of as an element in \(GF(2^n) \).

\(GF(2^n) \) is a vector space over \(GF(2) \), and multiplication by \(e \) is a linear mapping. So fix some basis and let \(M_e \) be the matrix of this mapping.

Then any \(M_e - M_{e'} \) is invertible because it corresponds to multiplication by \(e-e' \neq 0 \).

Leads to protocol for proving you know square roots mod \(N \) of \(x_1, \ldots, x_n \). Size of proof per instance is exactly equal to one run of the classic GMR protocol.
Also in Paper..

Interesting connection between construction of \(M_e \) and black-box secret sharing.

Most known efficient protocols (Schnorr, G-Q, ours) can be thought of as being based on a 2 out of \(T \) secret sharing scheme, for very large \(T \):

- **w**: secret, \(x \): commitment to secret
- \(P \) commits to randomness for s.s.
- \(V \) asks for \(e \)'th share of secret
- Prover reveals requested share, \(V \) checks share is correct

Zero-knowledge because one share does not reveal the secret.
Sound because given two correct shares, secret can be computed.