

1

Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA Certificate

Marc StevensCWI, NetherlandsAlexander SotirovNew York, USAJacob AppelbaumNoisebridge/Tor, SFArjen LenstraEPFL, Switzerland & Alcatel-Lucent Bell LabsDavid MolnarUC Berkeley, USADag Arne OsvikEPFL, SwitzerlandBenne de WegerTU/e, Netherlands

Collisions for MD5

2004: First collision for MD5 [Wang,Yu]:

- Two 128 byte messages with same MD5 hash value
- *Identical prefix* collision attack
 - Messages differ only in 128 consecutive `random' bytes
 - Bytes before or after may not differ
 - Currently: <1 sec on single pc core

• Same MD5 hash value \Rightarrow same signature

Chosen-Prefix Collisions

2006: Chosen-prefix collision (CPC) attack

- [Stevens, Lenstra, de Weger]
 - New stronger type of collisions
 - Choose two arbitrary files (same length)
 - Make them collide by appending 716 `random' bytes
 - Currently: 1 day on quad-core pc w/ only 588 bytes

- Example:
 - Colliding certificates with different identities
- MD5 harmful for digital signatures

Chosen-Prefix Collisions

- MD5 Compr
- Analyze pro
- Choose $\delta M =$
 - Which achi elimination
- Construct set – Sufficient c
- Solve set of
 Actual M, N
- Repeat unti

t Bits $Q_t: b_{31} \dots b_0$ # -3 10010110 0010011 1010000 11011100 32 -2 00100001 11010101 1000011 32 0 0100111 0000001 11011011 -++00011 32 1 .1 2 .00 0 1 .1 0 3 1 0 3 1 0 4 .10+ 0 1 5 1 6 1.0 0.1111 10000.113 132 7 1 1 6 1.0 111 10.0.0 133 7 1 11 11 9 .1. 0 0 111 100 14 10 111 100 111 101.1 111000 11 1 1 110101.0 1110100 11110000 1111 <				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t	Bits Q_t : $b_{31} \dots b_0$	#	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3	10010110 00100101 10101000 11011100	32	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		00100001 11010101 11100000 11-11110	32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	01001111 00101101 01011011 -++00011	32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_		7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	+0.1+01	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	000.010^+	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	^111. [^] +.0	9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	.0+0^+ 0	8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	
63				
		······ ······ ······ ······ ······ ·····		
		+		
	01			\mathbf{V}

Chosen-Prefix Collisions

- Not all $\delta IHVs$ can be eliminated
- First perform birthday search
 - Find δ IHVs of specific form e.g. δ IHV=(0,x,x,y)
 - Extend search to lower # near-collision blocks
- Appends 64 to 96 bits to prefixes
- \bullet Then iteratively eliminate differences in δIHV
- Till *δ*IHV=(0,0,0,0)

.....

.

serial number		serial number	
validity period	validity period		
"Arjen K. Lenstra"	(different)	"Marc Stevens"	
real cert RSA key 8192 bits	collision bits (computed)	real cert RSA key 8192 bits	
	identical butca		
X.509 extensions	(copied from real cert)	X.509 extensions	
valid signature		valid signature	
	validity period "Arjen K. Lenstra" real cert RSA key 8192 bits X.509 extensions	validity periodchosen prefix (different)"Arjen K. Lenstra"chosen prefix (different)real cert RSA key 8192 bitscollision bits (computed)X.509 extensionsidentical bytes (copied from real cert)	

Certification Authorities

- Security and trust provided by CAs only as strong as the weakest CA
- Internet security may break down when even one CA is subverted
 - Man-in-the-Middle attacks
 - Impersonation of any secure website
 - Looks completely secure and as original website
 - Attacker has full control over all decrypted data
 - Phishing for private data
 - Or subtly alter data such as financial transactions
 - eBay, PayPal, online banking, etc.
 - Requires interception of connections
 - E.g. by subverting the insecure Domain Name System (DNS)
 - Local network access is already sufficient

Certification Authorities

- We were able to create a sub-CA signed by a known trusted CA (RapidSSL)
 - Not by default known by major web browsers
 - But is trusted as it is signed by a known CA
- Same effect as subverting a known trusted CA
- Possible because one particular commercial CA
 - used MD5 to create signatures
 - MD5 known to have significant weaknesses since 2004
 - had weaknesses in procedures

Creating a sub-CA

serial number			
validity period		rogue CA cert	
	choson profix		
real cert domain	chosen prefix (different)	rogue CA RSA key	
name		rogue CA X.509 extensions	- CA bit
real cert RSA key max 2048 bits	collision bits (computed)	Netscape Comment Extension (contents ignored by	
X.509 extensions	identical bytes (copied from real cert)	browsers)	
valid signature		valid signature	
			C C

- Predicting serial number and validity period
- Total computation < a few days
- Max 204 collision bytes instead of 716
 - Limit by the CA RapidSSL
 - Greatly increases computational time
 - 17 months on 1000 pc cores

- RapidSSL uses a fully automated system
- Certificate issued exactly 6 seconds after clicking

?

I Approve | I Do Not Approve

• RapidSSL uses sequential serial numbers:

- Nov 3 07:44:08 2008 GMT 643006
- Nov 3 07:45:02 2008 GMT 643007
- Nov 3 07:46:02 2008 GMT 643008
- Nov 3 07:47:03 2008 GMT 643009
- Nov 3 07:48:02 2008 GMT 643010
- Nov 3 07:49:02 2008 GMT 643011
- Nov 3 07:50:02 2008 GMT 643012
- Nov 3 07:51:12 2008 GMT 643013
- Nov 3 07:51:29 2008 GMT 643014
- Nov 3 07:52:02 2008 GMT

Estimate: 800-1000 certificates per weekend Procedure:

- 1. Get the serial number ${\boldsymbol{\mathsf{S}}}$ on Friday
- Predict the value for time T on Sunday to be S+1000
- 3. Generate the collision bytes
- Shortly before time **T** buy enough certs to increment the counter to **S+999**
- 5. Send colliding request at time **T** and get serial number **S+1000**

• Allow extra bit differences in last step

• Birthday search for $\delta IHV = (\delta a, \delta b, \delta c, \delta d)$

red red ad co

Collision Improvements

• Rogue CA construction (<2048 bits)

- Cluster of 215 PlayStation3s
 - Performing like 8600 pc cores
- Complexity 2⁵⁰ using 30GB:
 - 1 day on cluster
- Complexity 248.2 using a few TBs.
 - 1 day on 20 PS3s and 1 pc
 - 1 day on 8 NVIDIA GeForce CTX280s
 - 1 day on Amazon EC2 at the cost of \$
- Normal CPC

- Complexity approx. 2³⁹ (<

Result

 Success at 4th attempt - Generated CA signature for real cert also valid for rogue CA cert • Explicit cafoquarder indows Internet Explorer 些 gust 2004 https://www.cwi.nl/index.html **?** 🗙 Certificate – P General Details Certification Path ed CAs Certification path Maj 🔛 Equifax Secure Global eBusiness CA-1 MD5 Collisions Inc. (http://www.phreedom.org/md5) wer 🔛 www.cwi.nl uately -R– M Irs a

Single block CPC

- Birthday search for reduced to 0 with
- New approach:
 - New fastest near-o
 - Allow extra factor
 - Results in set of 2^2 $\delta a = -2^5$, $\delta d = -2^5 + 2^2$
- Total complexity:
- Example single blo

- Collision attacks on MD5 form real threat
- Hard to replace broken crypto primitives
 - MD5 used by major CAs
 4 years after first collision attacks
 - Crypto primitives can be broken overnight
 - What to do when e.g. SHA-1 really falls, say yesterday?
 - How to make replacement of primitives easier?
- Source code implementation released: <u>http://code.google.com/p/hashclash</u> (Support for CELL/PS3 & CUDA)

Attack complexities for MD5, SHA-1 and SHA-2

	MD5		SHA-1		SHA-2(256)	
jaar	identical prefix	chosen prefix	identical prefix	chosen prefix	identical prefix	chosen prefix
- 2003	64	64	80	80	128	128
2004	40		69			
2005	37 _R		63			
2006	32	49		3 - 08		
2007	25	42	61			
2008	21					
2009	16	39	52 _{()B}	1P		

(logarithmic: 38 means $2^{38} \approx 1$ day on 1pc)