Improved Security Analyses for CBC MACs

Mihir Bellare
University of California, San Diego

Krzysztof Pietrzak
ETH Zirich

Phillip Rogaway
University of California, Davis

August 18, 2005

The CBC function

[n] = {0,1}", @ - [n] — [n].
The CBC function CBC,, : [n]* — [n] is defined as

CBCW(M1||M2|| Ce ||Mg) = Cg where Co = 0”, C,' = W(M;@C,-_l)

The CBC function

[n] = {0,1}", @ - [n] — [n].
The CBC function CBC,, : [n]* — [n] is defined as

CBCW(M]_”M2” Ce ||Mg) = Cg where Co = 0", C,' = W(M;@C,-_l)

M1 M2 M3 ME
7] | 7] | 7] [7]

Cl C2 C3 CZ

The Encrypted-CBC (ECBC) function
w1 [n] — [n], w2 [n] — [n].

The ECBC function ECBC,, ,, : [n]* — [n] is defined as
ECBC,, (M) = m(CBC,,(M))

The Encrypted-CBC (ECBC) function
w1 [n] — [n], w2 [n] — [n].

The ECBC function ECBC,, ,, : [n]* — [n] is defined as
ECBC,, (M) = m(CBC,,(M))

My M, M; M,
—® — %ﬁ

1 1 1 1
7

Attack Models

Alatk, g, n,] all attackers making g queries where each query

Attack Models

Alatk, g, n,] all attackers making g queries where each query

atk = any has length at most ¢ n-bit blocks.

Attack Models

Alatk, g, n,] all attackers making g queries where each query

atk = any has length at most ¢ n-bit blocks.
atk = eq has length exactly ¢ n-bit blocks.

Attack Models

Alatk, g, n,] all attackers making g queries where each query

atk = any has length at most ¢ n-bit blocks.
atk = eq has length exactly ¢ n-bit blocks.

atk = pf has length at most ¢ n-bit blocks and none is the
prefix of another.

Attack Models

Alatk, g, n,] all attackers making g queries where each query

atk = any has length at most ¢ n-bit blocks.
atk = eq has length exactly ¢ n-bit blocks.

atk = pf has length at most ¢ n-bit blocks and none is the
prefix of another.

M is a prefix of M" if M’ = M||M" for some M".

Attack Models

Alatk, g, n,] all attackers making g queries where each query

atk = any has length at most ¢ n-bit blocks.
atk = eq has length exactly ¢ n-bit blocks.

atk = pf has length at most ¢ n-bit blocks and none is the
prefix of another.

M is a prefix of M" if M’ = M||M" for some M".

Aleq, g, n, (] C Alpf,q,n, (] C Alany, g, n,{]

Attack Models

Alatk, g, n,] all attackers making g queries where each query

atk = any has length at most ¢ n-bit blocks.
atk = eq has length exactly ¢ n-bit blocks.

atk = pf has length at most ¢ n-bit blocks and none is the
prefix of another.

M is a prefix of M" if M' = M||M" for some M".

Aleq, g, n, (] C Alpf,q,n, (] C Alany, g, n,{]

Advcgc(A) = Prr < Perm(n); AB¢ = 1]—Pr[f < Func(n); A" = 1]

Advt(q,n, 0) = max Advcgc(A)
cBe A € Alatk, g, n, (]

Known Results
Known bounds for CBC

Known Results

Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"

Known Results
Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2"

Known Results
Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2"
folklore Advgge(2,n,2) ~ 1

Known Results

Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2"
folklore Advgge(2,n,2) ~ 1
CBC.(0M) =x(0") =Y

Known Results
Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2"
folklore Advgge(2,n,2) ~ 1

CBC.(0M) =x(0") =Y
CBC.(0"|Y)=n(r(0")®Y)=n(Y®Y)=7(0")=Y

Known Results
Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2"
folklore Advgge(2,n,2) ~ 1

Known bounds for ECBC
PROO Advilsc(q,n, t) < c-(%q*/2"

Known Results

Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2"
folklore Advgge(2,n,2) ~ 1

Known bounds for ECBC
PROO Advilsc(q,n, t) < c-(%q*/2"
DGHKRO04 Adviigc(g,n,t) < c-q?/2" for £ <22

Known Results
Known bounds for CBC
BKR94 Advggc(g,n, 0) < c-(?g*/2"
PROO Advl.c(g,n,0) < c-(2q%/2" e 0(1)
folklore Advgge(2,n,2) ~ 1

Known bounds for ECBC
PROO Advilsc(q,n, t) < c-(%q*/2" ¢ e 0(1)
DGHKRO04 Adviigc(g,n,t) < c-q?/2" for £ <22

AdvEL (272 n, () = ©(1)
Advile (272 n, () = ©(1)

Our Results

Improve prefix free CBC from (2.2 /2" to:
Theorem

Adv2sc(q,n 0) < c-0-q?/2" for (<23

Our Results

Improve prefix free CBC from (2.2 /2" to:

Theorem

Adv? (q,n0) <c-l-q?/2"

Improve ECBC from c - (2 - g% /2" to:
Theorem

AdviP(g,n, 0) < c- /it g2 /on

for

for

/ < 2n/4

Permutation vs. Functions

CBC = {CBC,; 7 < Perm(n)}
CBC' = {CBCy; f <& Func(n)}

AdvEfBC(q = 2n/47 n>€ = 2n/4) ~ /(- q2/2" < 2—n/4

AdvZ, (g =2"%, n L =2"*) = ©(1) [Berke04]

ECBC and the Carter-Wegman Paradigm

ECBCy, 1, (.) = m(CBC,, ()
CP,(M, M’) = Pr[r « Perm(n); CBC,(M) = CBC,(M')]

CPYY = CP,(M, M)

max
M, M M| < ¢n,|M'| < {n

Adviesc(g,n () < g*- CPLY

CBC and the Full Collision Probability

M= M| M| ... My and M' = M.|| M| ... M!

CBC and the Full Collision Probability

M= M| M| ... My and M' = M.|| M| ... M!

M
G G G o G G G Cl

FCP,(M, M) = Pr[x « Perm(n); C., € {Cy,...,Cn, C{, ..., Cl_1}]

FCP”, = max FCP,(M, M)
T MM M| < fn M| < n

Advitsc(g,n 0) < q*- cPY

AdvZL (g, n,0) < g? - FCP¥, 1 *md’

Advitsc(g,n 0) < q*- cPY

Lemma

an ()
CPMV < o _|_ 22n

Where d(¢) < (X/"nf — 5(¢) is the maximum number of
divisors of any m < /.

AdvZ (q.n, () < g2 - FCPY, 4 427

Advitsc(g,n 0) < q*- cPY

Lemma

an ()
CPMV < o _|_ 22n

Where d(¢) < (X/"nf — 5(¢) is the maximum number of
divisors of any m < /.

AdvZ (q.n, () < g2 - FCPY, 4 427

Lemma

f 8¢ 8r*
FCPiZ_Z7 =

The Game-Playing Technique [BR05]

On the s*™® query F(M,) Game D1
100 ms — |Ms|p, CS «— Q"

101 forji«—1toms—1do

w X CloM

w3 if X! € Dom(n) then C! «— w(X[)
108 else 7(X/) — C! <* Ran(r) D1 implements CBC.
w05 XM — CM~lg MM

s CM — Cm & {0,1}"

w7 if C"€Ran(n): bad—1, C™< Ran(n)
w08 if X € Dom(n): bad—1, C['s—m(X™)
100 (X)) — C

1o if bad then return C™

1 return C™

The Game-Playing Technique [BR05]

On the s query F(M;) Game DO
100 ms — |Ms|p, CSO «— Q"

101 forji«—1toms—1do

w X CloM

w3 if X! € Dom(7) then C! — m(X[)

o else w(X[) — Ci < Ran(n) D1 implements CBC.
105 XM — CMs L MM
“ms ms 8 .
w6 G (= {0,1}" DO implements a random

w7 if CeRan(r): bad—1, function.
108 if X[™€ Dom(n): bad«1,

100 w(X[e) — CM™

10 if bad then _

m return C™

The Game-Playing Technique [BR05]

100
101
102
103

104
105

106

107

108

109

110

111

On the st query F(M;)

Game DO
ms «— |Ms|n, (_‘50 «— 0"
forj«—1toms—1do

Xi— CiteM,

if X! € Dom(r) then C! «— =(X!)

else 7(X!) — C! & Ran(r)

X — C o M
e = {01}

if C/"c Ran(r): bad1,
if X/"€ Dom(r): bad—1,

r(X) — C

if bad then _

return C™

D1 implements CBC.

DO implements a random

function.

Advcgc(A) = Pr[AP? = 1] - Pr[AP! = 1]

The Game-Playing Technique [BR05]

100
101
102
103

104
105

106

107

108

109

110

111

On the st query F(M;)

Game DO
ms «— |Ms|n, (_‘50 «— 0"
forj«—1toms—1do

Xi— CiteM,

if X! € Dom(r) then C! «— =(X!)

else 7(X!) — C! & Ran(r)

X — C o M
e = {01}

if C/"c Ran(r): bad1,
if X/"€ Dom(r): bad—1,

r(X) — C

if bad then _

return C™

D1 implements CBC.

DO implements a random

function.

Advcgc(A) = Pr[AP? = 1] — Pr[AP! = 1] < Pr[AP° sets bad)]

The Game-Playing Technique Cnt.

700 7 < Perm(n) Game D7
701 CY — CY « 0"

702 for i +— 1 to m; do

s X{— GTraom, ¢ — n(X])

704 for i +— 1 to m» do

w05 X5 Ciltam, G — n(X))

706 bad «— X532 € {X{,..., X[,

707 X21,...,X§'2_1}

The Game-Playing Technique Cnt.

700 7 < Perm(n) Game D7
701 CY — CY « 0"

702 for i +— 1 to m; do

s X{— GTraom, ¢ — n(X])

704 for i +— 1 to m» do

w05 X5 Ciltam, G — n(X))

706 bad «— X532 € {X{,..., X[,

707 X21,...,X§'2_1}

Pr[AP" sets bad] = FCP, (M| ... |[M5, . M3 ..

M2

m2

)

The Game-Playing Technique Cnt.

On the s query F(M;) Game D1
100 My — |Ms|,, CO 0"

101 for i+ 1to ms — 1 do

w X — CteM

w3 if X! € Dom(n) then C] — n(X])
104 else m(X!) — C! < Ran(r)

105 XM — Cm e MM

w6 CM — Cme & {0,1}"

w7 if €€ Ran(nr): bad—1, /< Ran(r)
ws if X"s€ Dom(r): bad—1, C["s—7(X[™)
100 (X)) — CM™

o if bad then return (™

1 return Z's’”f

Pr[AP! sets bad] < q°-Pr[AP7 sets bad]

7 < Perm(n) Game D7
Qo
for i — 1 tom; do

X{—Cj~

YoM, ¢ — (X

for i — 1 tom, do
Xj— G oM, G — n(X5)
bad «— X352 € {X{,..., X[,

XX

AdeBC(q,n,é) < ¢ FCPp€+

4(q?

2"

Advitsc(g,n 0) < q*- cPY

Lemma

an ()
CPMV < o _|_ 22n

Where d(¢) < (X/"nf — 5(¢) is the maximum number of
divisors of any m < /.

AdvZ (q.n, () < g2 - FCPY, 4 427

Lemma

f 8¢ 8r*
FCPiZ_Z7 =

A Graph-Based Representation of CBC
[DGHKRO4]

A Graph-Based Representation of CBC
[DGHKRO4]

A
@

A Graph-Based Representation of CBC
[DGHKRO4]

ADT@
@

A Graph-Based Representation of CBC
[DGHKRO4]

1/’@P7$@p5*@
@

A Graph-Based Representation of CBC
[DGHKRO4]

7 7 5 4 4 5 5 3
G G G G

ADTHITHO
@

A Graph-Based Representation of CBC
[DGHKRO4]

@@~
o
hG

4

A Graph-Based Representation of CBC
[DGHKRO4]

Accident: C} =

O RN CENCRNG
o

g

A Graph-Based Representation of CBC
[DGHKRO4]

7 7 5 4 4 5 5 3
G G G Cs a G G
Accident: C} = Induced Collision: G = G

A *@’5*@' >(©
o

~g

A Graph-Based Representation of CBC
[DGHKRO4]

7 7 5 4 4 5 5 3
G G G G a G G G
Accident: C; = Induced Collision: G = G

DT OO
o BN

g

Structure Graph G, Acc(G,) =1

Structure Graphs

M=7|7|5]4 M’ =4|]5]5]3

@{@7@»@4»@
@ @@ @)

Acc(H) =0

Structure Graphs

M=7|7|514 M =4|5|5]3 Acc(H) =3

ol]?gé;}}?
® ®

Structure Graphs

M=7|7|5]14 M =4|5||5|3 Acc(H)=3

AT
T Tw

Lemma

Pr[m S Perm(n); G, = H] < (2" — 2¢)~ Acc(H)

M=7|7||5]4 M =4|5/5]3

CP,(M,M') = Pr[r < Perm(n); CBC.(M) = CBC.(M)]

M =T7|7][5]4 M’ = 4|5]|5]3

CP,(M,M") = Pr[r < Perm(n); CBC,(M) = CBC(M')]
— Pr[r < Perm(n); G, satisfies C; = C}]

M =T7|7][5]4 M’ = 4|5]|5]3

CP,(M,M") = Pr[r < Perm(n); CBC,(M) = CBC(M')]
— Pr[r < Perm(n); G, satisfies C; = C}]

WCERCRNCENG
@, £
@@

M =7|7||5||4 M’ = 4]|5||5/]3 (=4

CP,(M, M) = Pr[G, satisfies C4 = ;]

< Pr[Acc(G,) =1 and G, satisfies G4 = C,]+Pr[Acc(G,) > 2]

#G[with 1 accident where C; = C‘{]
2n—2.-¢ 22”

Lemma

Pr[r < Perm(n); G, = H] < (2" — 2¢)A<<(H)

M, M" with m = |M|, m" = |M’|, £ = max(m, m").

#G|[with 1 acc. where C,, = C.)]| §g.¢2

/
<
CP,(M, M) < 0 +

Lemma
#(G with 1 acc. where C,, = C,,] < d({)

Where d(£) < (2/"n = o(¢) is the maximum number of
divisors of any m </, e.g. d(15) =6 as 12 < 15 has 6
divisors 1,2,3,4,6,12.

Questions?

